

Emerald Innovation™ 3000

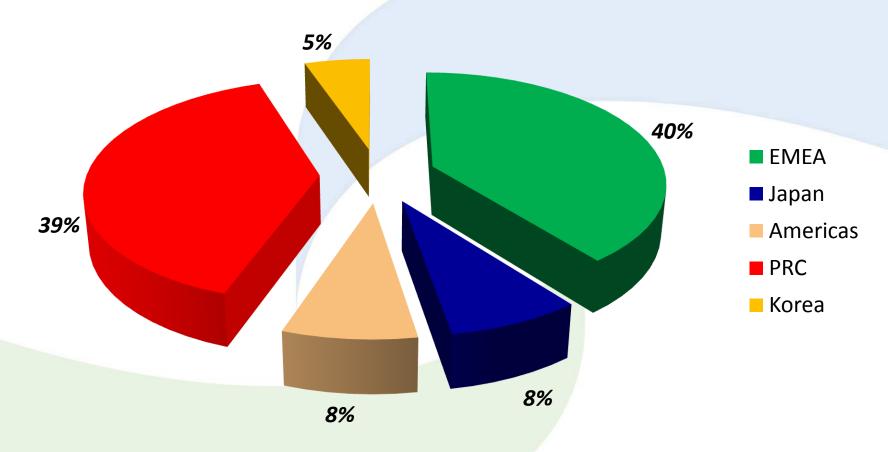
Polymeric flame retardant for polystyrene foams

Marshall Moore, Director Global R&D & Advocacy
HBCD Alternatives Information Session
UNEP POPRC9
October 14, 2013

Outline

- Introduction to Chemtura
- Regional Demand for an HBCD Alternative
- The Challenge to Provide an Alternative
- Emerald Innovation™ 3000
 - Product Technology
 - Flammability
 - Hazard Assessment
 - Notification Status
 - Availability
 - Affordability
- Conclusion

Chemtura Today


- NYSE/Euronext: CHMT
- 2012 sales of \$2.6 billion (reflects discontinue operations treatment for the sale of Chemtura's plastic antioxidants business)
- Roughly 4,000 employees worldwide
- Manufactures in 13 countries and sells products in over 100 countries
- Global headquarters in Philadelphia, Pennsylvania
- Regional centers in:
 - Middlebury, CT
 - Manchester, UK
 - Sao Paulo, Brazil
 - Shanghai, China

Corporate Headquarters: Philadelphia, Pennsylvania, USA

Regional Distribution of HBCD Demand

 Global production estimated as 31,000 mt in 2011 per UNEP/POPS/POPRC.8/4 report October 2012

The commercial challenge for new flame retardants

Requirements for an Appropriate HBCD replacement

Environmentally Sound

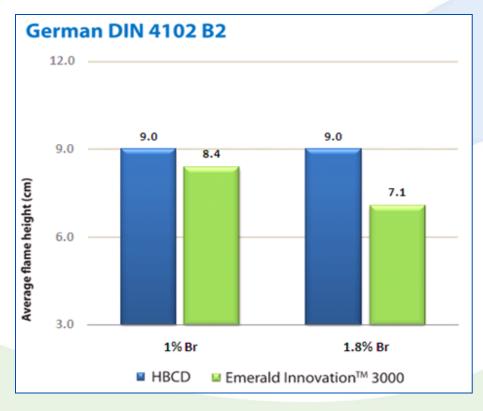
- Not Persistent, Bioaccumulative, and Toxic (not a PBT)
- Not very Persistent, Not very Bioaccumulative (not vPvB)

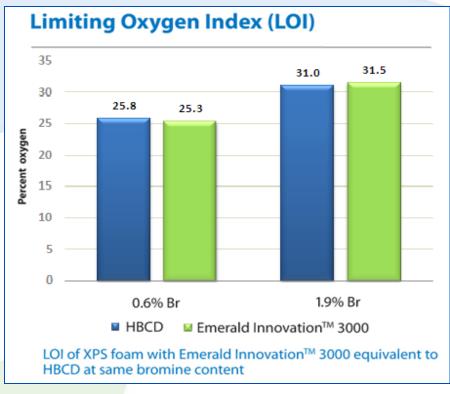
Provides Required Fire Safety and Mechanical Performance

- Maintain PS foam properties including fire performance
- No negative impact on product performance

Compatible with Existing Manufacturing Processes

- Extruded Polystyrene (XPS) melt processing
- Expandable Polystyrene (EPS) polymerization
- Compatible with current production systems




Emerald Innovation™ 3000

- Commercial Product Based on Licensed Technology from Dow Chemical Company
- Award winning innovation
- Chemtura is the First of Three Announced Licensees
- Engineered for Use in Polystyrene Foam
- High Molecular Weight Polymer for Favorable Hazard Profile
 - Mw > 100,000 g/mole

Meets Flammability Requirements

Demonstrates comparable fire retardant efficiency versus HBCD at similar bromine levels

Appropriate EHS profile

DRAFT - September 2013

ES-1 Screening Level Toxicology Hazard Summary for HBCD and Alternatives

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with substance including combustion and degradation by-products.

The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from predictive models and/or professional judgment.

d This hazard designation would be assigned MODERATE for a potential for lung overloading if >5% of the particles are in the respirable range as a result of dust forming operations.

§ Based on analogy to experimental data for a structurally similar compound.

		Human Health Effects						Aquatic Toxicity		Environmental Fate						
Chemical (for full chemical name and relevant trade names see the individual profiles in Section 4.8)	CAS RN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization ¹	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
Hexabromocyclododecane (HBCD) Br Br Br Br	25637-99-4; 3194-55-6	L	М	L	M	Н	M	M	L		VL	VL	VH	VH	н	VH
Butadiene styrene brominated copolymer	1195978-93-8	L	L	L	L	L	L	L.	L		L	L	L	L	VН	L
TBBPA-bis brominated ether derivative	97416-84-7	L§	M [§]	M [§]	M [§]	M [§]	L	M [§]	L§		L	L	L	L	Н	Н

¹ At this time, there are no standard test methods for respiratory sensitization; as a result there was no designation for this endpoint.

Source: "Flame Retardant Alternatives for Hexabromocyclododecane (HBCD) (PDF)", Draft for Public Comment, Sep. 2013; http://earth1.epa.gov/oppt/dfe/pubs/projects/hbcd/about.htm

Appropriate EHS profile

HBCD

25637-99-4 Version: Draft Date: August 2013

Human Health Acute toxicity

Carcinogenicity

Mutagenicity/Genetic toxicity Reproductive toxicity

Developmental toxicity Neurological toxicity

Repeated dose toxicity

Acute aquatic toxicity Chronic aquatic toxicity

Bioaccumulation/Bioconcentration

Environmental fate Persistence

Skin sensitization Eve irritation

Dermal irritation

Ecotoxicity

Design for the Environment : Alternative Assessment

Cyclododecane, hexabromo-; Hexabromocyclododecane; HBCD

TBBPA-BDPE

Design for the Environment : <u>Alternative Assessment</u>
Tetrabromobisphenol A Bis (2,3-dibromopropyl) Ether
21850-44-2

Version: Draft	
Date: July 2012	
Human Health	
Acute toxicity	\mathbf{L}
Carcinogenicity	M*
Mutagenicity/Genetic toxicity	\mathbf{M}
Reproductive toxicity	M*
Developmental toxicity	M*
Neurological toxicity	L*
Repeated dose toxicity	\mathbf{M}
Skin sensitization	M*
Eve irritation	L*
Dermal irritation	L*
Ecotoxicity	
Acute aquatic toxicity	L*
Chronic aquatic toxicity	L*
Environmental fate	
Persistence	VH
Rioaccumulation/ Rioconcentration	H*

Emerald Innovation™ 3000

1	Design for the Environment : Alternative Assess	ment
l	Benzene, ethenyl-, polymer with 1,3 butadiene, b	orominate
l	1195978-93-8 Version: Draft	
l	Date: August 2013	
l	Date: Mugust 2015	
l		
l	Human Health	
l	Acute toxicity	L
l	Carcinogenicity	\mathbf{L}^{\star}
l	Mutagenicity/Genetic toxicity	\mathbf{L}
l	Reproductive toxicity	\mathbf{L}
l	Developmental toxicity	\mathbf{L}
l	Neurological toxicity	\mathbf{L}^{\star}
l	Repeated dose toxicity	\mathbf{L}
l	Skin sensitization	\mathbf{L}
l	Eve irritation	\mathbf{L}
l	Dermal irritation	\mathbf{L}
l	Ecotoxicity	
l	Acute aquatic toxicity	\mathbf{L}
l	Chronic aquatic toxicity	\mathbf{L}^{\star}
l	Environmental fate	
l	<u>Persistence</u>	VH

Source: U.S. EPA ChemView, http://java.epa.gov/chemview

 \mathbf{L}

 \mathbf{M}^{\star}

М

Μ×

 \mathbf{M}

VL

VL

VH

VH

Н

VH

vL= very Low, L= Low, vH= veryHigh, NE= no evidence

Persistent by Design, Required for Service Life & Stability Low to Very Low in All Health and Environmental Effects

Bioaccumulation/Bioconcentration

 L^*

^{*} Endpoints assigned using values from predictive models and/or professional judgment.

Availability

- Nearly one year of commercial production and sales
- At least 10,000/mt per year of nameplate capacity
- Capable of expansion
- Stocked in all major consuming regions
- Ongoing commercial sales for use in both EPS and XPS in NAFTA, Asia-Pacific and EU
- Additional licensees have announced production coming on stream

Approved territories for supply of EI 3000

Chemical Inventory Approvals

- United States, TSCA Inventory
- European Union, REACh
- Republic of Korea
- Taiwan
- China
- Japan
- Canada, DSL
- Philippines
- New Zealand✓

Additional Areas Where Supply is Permitted

- Israel
- CIS
- Ukraine

Manufacturing Plant in El Dorado, Arkansas, USA

Affordability

- No major capital investment required by users
- Only a few % increase on material cost of final PS products
- Multiple licensees create global competition to supply products based on the Dow technology
- Capacity utilization increasing

Cost effective replacement for HBCD

The Polymeric FR Technology Provides an HBCD Alternative that is:

Appropriate:

- Requires minimal adjustments to production processes in EPS and XPS
- Meets performance requirements for foam boards
- Favorable environmental profile

Available:

- Full commercial production on-line
- Additional licensees announced

Affordable:

- Marginal increase in final product costs
- Major capital investments by users not required

