

Expert Meeting to Further Develop the Standardized Toolkit for Identification and Quantification of Dioxin and Furan Releases

Toolkit Category 3 – Update 2009

Geneva, 01 December 2009 U. Karl

- Reminder Toolkit Workshop 2008
- Upcoming information in 2009
- New synthesis reports in 2009
- Conclusions

Reminder Toolkit Workshop 2008

- Review of existing emission factors
- Review of proposed source categories
- Further information on nonconventional fuels
- Emission factors for "simple" technologies

Reminder Toolkit Workshop 2008

- Data collection form:
 - Pasquale Spezzano, ENEA, Italy
 - Emmanuel Fiani, ADEME, France
 - Yasuhiro Hirai, Japan

Results for power boilers using coal, heavy fuel oil, orimulsion, natural gas biomass

• Several new publications in 2008

Upcoming Information in 2009

- Regular survey of publications via Science Direct by Pat Costner
 - → new information on Category 3 sources is scarce
- Upcoming new synthesis reports:
 - EMEP/CORINAIR Emission Inventory Guidebook 2009
 - BIPRO Report "INFORMATION EXCHANGE ON REDUCTION OF DIOXIN EMISSIONS FROM DOMESTIC SOURCES"
 - CITEPA: National Inventory Report for France

Chemosphere

Dioxin-like compound compositional profiles of furnace bottom ashes from household combustion in Poland and their possible associations with contamination status of agricultural soil and pine needles

Barbara Wyrzykowska ^{a,b}, Nobuyasu Hanari^a, Anna Orlikowska^b, Nobuyoshi Yamashita^a, Jerzy Falandysz^{b,•}

^a National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, JP 305-8569 Ibaraki, Japan
^b Department of Environmental Chemistry and Ecotoxicology, University of Gdańsk, 18 Sobieskiego Str., PL 80-952 Gdańsk, Poland

Table 1

Toxic equivalency of dioxin-like compounds in furnace bottom ash from household combustion (ng TEQ kg-1).

Coal 1 ash (ng TEQkg ⁻¹)	Coal 2 ash (ng TEQkg ⁻¹)	Coal 3 ash (ng TEQ kg ⁻¹)	Coke ash (ng TEQ kg ⁻¹)	Wood ash (ng TEQ kg ⁻¹)	Waste ash (ng TEQ kg^1)
0,052	0,070	0.085	0.084	0,15	0.12
0,00	0.00	0.11	0,19	0.83	0.28
0.00	0.00	0.27	0.40	1.1	0.15
0.00	0.000	0.39	0.59	1.9	0.43
0.052	0.070	0,47	0.67	2,0	0,55
	0.052 0.00 0.00 0.00 0.00	0.052 0.070 0.00 0.00 0.00 0.00 0.00 0.00	0.052 0.070 0.085 0.00 0.00 0.11 0.00 0.00 0.27 0.00 0.000 0.39	0.052 0.070 0.085 0.084 0.00 0.00 0.11 0.19 0.00 0.00 0.27 0.40 0.00 0.00 0.39 0.59	0.052 0.070 0.085 0.084 0.15 0.00 0.00 0.11 0.19 0.83 0.00 0.00 0.27 0.40 1.1 0.00 0.00 0.39 0.59 1.9

EMEP/CORINAIR Emission Inventory Guidebook

EEA Technical report No 9/2009

New edition published in 2009 Includes emission factors for PCDD/PCDF, PCB and HCB

Mainly refers to Toolkit, EMEP Guidebook 2006 edition and Kakareka (PCB) EMEP/EEA air pollutant emission inventory guidebook 2009 Technikal guidance to prepare national emission inventories

1889 1725-2237

BIPRO Report on EU Member States Reporting

Information Exchange on Reduction of Dioxin **Emissions** from **Domestic Sources** Reporting under the Regulation (EC) No 850/2004 of the **European Parliament** and of the Council on persistent organic pollutants & amending Directive 79/117/EEC

INFORMATION EXCHANGE ON REDUCTION OF DIOXIN EMISSIONS FROM DOMESTIC SOURCES

REFERENCE: 070307/2007/481007/MAR/C4

FINAL REPORT

09 April 2009

Report prepared for the European Commission by

BiPRO

Beratungsgesellschaft für integrierte Problemlösungen

In cooperation with:

FORCE Technology – BIO Intelligence Services Mr. Stefano Ceserini (Engineering Faculty of the Politecnico di Milano)

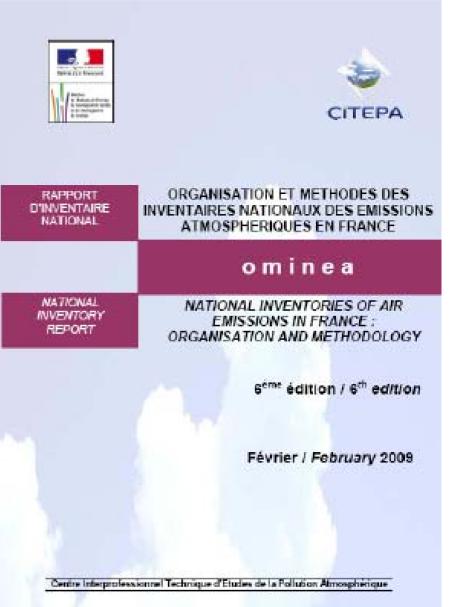
EIFER BIPRO Report on EU Member States Reporting

Scope:

Literature search on dioxin emissions from domestic sources

90 literature sources have been identified in a worldwide search for primary measurement data and emission factors (EFs) for domestic heating and cooking appliances, charcoal grills, open burning of waste, candle burning and mobile domestic sources. Investigations included air emissions and releases into residues and focused on appliances <50 kW.

There are not many recent primary measurement studies which could be identified besides the ones already included into the UNEP Toolkit and the UNECE Guidebook. Means from studies identified largely confirm the EFs presented in the UNEP Toolkit.


Emission Factors Used in MS Reports

	Wood	1A4bi Residential μg TEQ/TJ	Fireplace µg TEQ/TJ	Domestic stoves µg TEQ/TJ	Small boiler (<50 kWth) µg TEQ/TJ	
UNEP Toolkit	Clean wood			100		
UNEP Toolkit	Contaminated wood/biomass			1,500		
UNECE Guidebook	Wood	700	800	800	500	
cz		397**				
DE				40	40	
DK -	Wood	419				
DIK	Straw	500				
EE	Wood, waste wood, peat	100				
FI	Wood	21				
FI	Peat	17.5				
FR		20-100				10

National Inventory Report France

National Inventories of Air Emissions in France: Organisation and Methodology Provides an almost complete set of emission factors from French and European sources; Toolkit rarely cited

National Inventory Report France vs Toolkit

Table 35: Emission factors for heat and power generation plants in industry fuelled with fossil fuels

Emission Factors - µg TEQ/TJ of Fossil Fuel Burned		
Air	Water	Residue
35	ND	ND
10	ND	14
2.5	ND	ND
1.5	ND	*
0.5	ND	ND
	Foss Air 35 10 2.5 1.5	Fossil Fuel BurnedAirWater35ND10ND2.5ND1.5ND

Releases with residues can be calculated on a mass basis (see Section 6.3.1.5)

Chaudlères ng PCDD-F / GJ	Turbines à gaz ng PCDD-F / GJ	Moteurs fixes ng PCDD-F / GJ
3,85	(a)	(a)
6,25	(a)	(a)
2,50	(a)	(a)
2,50	2,50	2,50
	ng PCDD-F / GJ 3,85 6,25 2,50	ng PCDD-F / GJ 3,85 (a) 6,25 (a) 2,50 (a)

(a) cas inexistant

National Inventory Report France

Proposal of HCB and PCB emission factors per type of fuel

Code NAPFUEc	Désignation	µg PCB / GJ	Référence
101	Charbon à coke	55	[346]
102	Charbon vapeur	55	[346]
103	Charbon sous-bitumineux	72	[346]
104	Aggioméré de houille	45	[346]
105	Lignite	141 (<50 MW) 106 (>50 MW)	[40]
111	Bois et assimilé	31	[350]
116	Déchets de bois	50	[350]
1170	Autres déchets agricoles	Pas de donnée disponible	
203	Fioul lourd HTS / BTS / TBTS	15	[40]
204	Fioul domestique	8,8	[347]
301	Gaz naturel	A priori nul ou négligeable	

- New data avaiable on additional pollutants (HCB, PCB) and fuels
- Few relevant publications in the scientific literature in 2009
- New synthesis reports available
- Questions on "simple" technologies remain open

Thank You