## MINISTERIO DE AGRICULTURA, PESCA Y ALIMENTACIÓN

### INSTITUTO NACIONAL DE INVESTIGACIÓN Y TECNOLOGÍA AGRARIA Y ALIMENTARIA (I.N.I.A.)

Ctra. De La Coruña, km. 7

28040-Madrid

ESPAÑA

Monograph prepared in the context of the inclusion of the following active substance in Annex I of the Council Directive 91/414/EEC

# ENDOSULFAN

Volume I

**Report and Proposed Decision** 

December 1999

Endosulfan

### TABLE OF CONTENTS

| 1        | Statement of subject matter and purpose for which the monograph was prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2      |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1.1      | Purpose for which the monograph was prepared (Dossier Document A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2      |
| 1.2      | Summary and assessment of information relating to the collective assessment of dossiers (De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ossier |
| Docum    | ent B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2      |
| 1.3      | Identity of the active substance (IIA, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4      |
| 1.3.1    | Name and address of applicant(s) for inclusion of the active substance in Annex I (IIA, 1.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4      |
| 1.3.2    | Common name and synonyms (IIA, 1.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4      |
| 1.3.3    | Chemical name (IIA, 1.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5      |
| 1.3.4    | Manufacturer's development code number (IIA, 1.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5      |
| 1.3.5    | CAS, EEC and CIPAC numbers (IIA, 1.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5      |
| 1.3.6    | Molecular and structural formulae, molecular mass (IIA, 1.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6      |
| 1.3.7    | Manufacturer or manufacturers of the active substance (IIA, 1.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6      |
| 1.3.8    | Method or methods of manufacture (IIA, 1.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7      |
| 1.3.9    | Specification of purity of the active substance (IIA, 1.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7      |
| 1.3.10   | Identity of isomers, impurities and additives (IIA, 1.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7      |
| 1.3.10.1 | 1 Maximum content of isomers and impurities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7      |
| 1.3.10.2 | 2 Identity, method of determination and content of all toxicologically or environmentally significant significant set of the set of | ficant |
| compor   | nents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7      |
| 1.3.10.3 | 3 Identity, content and function of additives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |
| 1.3.11   | Analytical profile of batches (IIA, 1.11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
| 1.4a     | Identity of the plant protection product (IIA, 3.1; IIIA, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9      |
| 1.4.1a   | Current, former and proposed trade names and development code numbers (IIIA, 1.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9      |
| 1.4.2a   | Manufacturer or manufacturers of the plant protection product (IIIA, 1.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9      |
| 1.4.3a   | Type of the preparation and code (IIIA, 1.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9      |
| 1.4.4a   | Function (IIA, 3.1; IIIA, 1.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9      |
| 1.4.5a   | Composition of the preparation (IIIA, 1.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9      |
| 1.5a     | Uses of the plant protection product (IIA, 3.2 to 3.4; IIIA, 3.1 to 3.7, 3.9 and 12.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
| 1.5.1a   | Field of use (IIA, 3.3; IIIA, 3.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| 1.5.2a   | Effects on harmful organisms (IIA, 3.2; IIIA, 3.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| 1.5.3a   | Summary of intended uses (IIA, 3.4; IIIA, 3.3 to 3.7, 3.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
| 1.5.4a   | Information on authorisations in EU Member States (IIIA, 12.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| 1.4b     | Identity of the plant protection product (IIA, 3.1; IIIA, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |

| Mo     | onograph    | Volume I              | Table of contents           | 2             | Endosulfan        | December 1999 |    |
|--------|-------------|-----------------------|-----------------------------|---------------|-------------------|---------------|----|
| 1.4.1b | Current, fo | rmer and proposed     | l trade names and develo    | opment        | code numbers (II  | IA, 1.3)      | 25 |
| 1.4.2b | Manufactu   | rer or manufacture    | ers of the plant protection | n produc      | et (IIIA, 1.2)    |               | 25 |
| 1.4.3b | Type of the | e preparation and c   | code (IIIA, 1.5)            |               |                   |               | 25 |
| 1.4.4b | Function (I | IIA, 3.1; IIIA, 1.6)  |                             |               |                   |               | 25 |
| 1.4.5b | Compositi   | on of the preparation | on (IIIA, 1.4)              |               |                   |               | 25 |
| 1.5b   | Uses of the | e plant protection p  | product (IIA, 3.2 to 3.4; ] | IIIA, 3.1     | to 3.7, 3.9 and 1 | 2.1)          | 25 |
| 1.5.1b | Field of us | e (IIA, 3.3; IIIA, 3  | .1)                         |               |                   |               | 25 |
| 1.5.2b | Effects on  | harmful organisms     | s (IIA, 3.2; IIIA, 3.2)     |               |                   |               | 25 |
| 1.5.3b | Summary of  | intended uses (IIA    | , 3.4; IIIA, 3.3 to 3.7, 3. | 9)            |                   |               | 26 |
| 1.5.4b | Informatio  | n on authorisations   | s in EU Member States (     | IIIA, 12      | 2.1)              |               | 27 |
| 1.4c   | Identity of | the plant protection  | n product (IIA, 3.1; IIIA   | <b>A</b> , 1) |                   |               | 28 |
| 1.4.1c | Current, fo | rmer and proposed     | l trade names and develo    | opment        | code numbers (II  | IA, 1.3)      | 28 |
| 1.4.2c | Manufactu   | rer or manufacture    | ers of the plant protection | n produc      | et (IIIA, 1.2)    |               | 28 |
| 1.4.3c | Type of the | e preparation and c   | code (IIIA, 1.5)            |               |                   |               | 28 |
| 1.4.4c | Function (  | IIA, 3.1; IIIA, 1.6)  |                             |               |                   |               | 28 |
| 1.4.5c | Compositi   | on of the preparation | on (IIIA, 1.4)              |               |                   |               | 28 |
| 1.5c   | Uses of the | e plant protection p  | product (IIA, 3.2 to 3.4; ] | IIIA, 3.1     | to 3.7, 3.9 and 1 | 2.1)          | 28 |
| 1.5.1c | Field of us | e (IIA, 3.3; IIIA, 3  | .1)                         |               |                   |               | 28 |
| 1.5.2c | Effects on  | harmful organisms     | s (IIA, 3.2; IIIA, 3.2)     |               |                   |               | 29 |
| 1.5.3c | Summary of  | intended uses (IIA    | , 3.4; IIIA, 3.3 to 3.7, 3. | 9)            |                   |               | 29 |
| 1.5.4c | Informatio  | n on authorisations   | s in EU Member States (     | IIIA, 12      | 2.1)              |               | 33 |

| 2        | Reasoned statement of the overall conclusions drawn by the Rapporteur Member State         |         |
|----------|--------------------------------------------------------------------------------------------|---------|
| 2.1.1    | Identity                                                                                   |         |
| 2.1.2    | Physical and chemical properties                                                           |         |
| 2.1.3    | Details of uses and further information                                                    |         |
| 2.1.4    | Classification and labelling                                                               |         |
| 2.2      | Methods of analysis                                                                        |         |
| 2.3      | Impact on human and animal health                                                          |         |
| 2.3.1    | Effects having relevance to human and animal health arising from exposure to the active su | bstance |
| or to in | npurities contained in the active substance or to their transformation products            |         |
| 2.3.2    | ADI                                                                                        |         |
| 2.3.3    | ARfD (acute reference dose)                                                                | 59      |
| 2.3.4    | AOEL                                                                                       | 59      |
| 2.3.5    | Drinking water limit                                                                       |         |

| Monograph | Volume I | Table of contents | 3 | Endosulfan | December 1999 |
|-----------|----------|-------------------|---|------------|---------------|
|-----------|----------|-------------------|---|------------|---------------|

| 2.3.6    | Impact on human or animal health arising from exposure to the active substance or to impuriti | es    |
|----------|-----------------------------------------------------------------------------------------------|-------|
| containe | ed in it                                                                                      | 59    |
| 2.4      | Residues                                                                                      | 63    |
| 2.4.1    | Definition of the residues relevant to MRLs                                                   | 63    |
| 2.4.2    | Residues relevant to consumer safety                                                          | 63    |
| 2.4.3    | Residues relevant to worker safety                                                            | 66    |
| 2.4.4    | Proposed EU MRLs and compliance with existing MRLs                                            | 66    |
| 2.4.5    | Proposed EU import tolerances and compliance with existing MRLs                               | 68    |
| 2.5      | Fate and behaviour in the environment                                                         | 68    |
| 2.5.1    | Definition of the residues to the environment                                                 | 68    |
| 2.5.2    | Fate and behaviour in soil                                                                    | 69    |
| 2.5.2.1  | Predicted environmental concentrations is soil (PECs) (IIIA, 9.1.3)                           | 74    |
| 2.5.3    | Fate and behaviour in water                                                                   | 78    |
| 2.5.3.1  | Impact on water treatment procedures                                                          | 80    |
| 2.5.3.2  | Predicted environmental concentrations in surface water and in ground water (PECSW, PEGGW)    | 80    |
| 2.5.4    | Fate and behaviour in air                                                                     | 84    |
| 2.5.4.1  | Predicted environmental concentrations in air (PECA)                                          | 84    |
| 2.6      | Effects on non-target species                                                                 | 84    |
| 2.6.1    | Effects on terrestrial vertebrates                                                            | 84    |
| 2.6.2 Ef | fects on aquatic organism                                                                     | 90    |
| 2.6.2.1  | Effects on fish                                                                               | 90    |
| 2.6.2.2  | Effects on aquatic invertebrates                                                              | 99    |
| 2.6.2.3  | Effects on algae                                                                              | 103   |
| 2.6.2.4  | Effects on dwelling organisms                                                                 | . 104 |
| 2.6.3    | Effect assessment for bees and other non-target arthropds.                                    | . 105 |
| 2.6.4    | Effect assessment for earthworms                                                              | . 105 |
| 2.6.5    | Effects on soil non target micro-organisms                                                    | 107   |
| 2.6.6 Ef | fects on other non-target organisms (flora and fauna) believed to be at risk                  | . 107 |
| 2.6.7    | Effects on biological methods of sewage treatment                                             | . 107 |
| APPEN    | DIX 1 - STANDARD TERMS AND ABBREVIATIONS                                                      | . 108 |
| APPEN    | DIX 2 - PREPARATION (FORMULATION) TYPES AND CODES                                             | 118   |
| Append   | ix 3 - Listing of end points                                                                  | 119   |

| 3   | Proposed decision with respect to the application for inclusion of the active substance in Annex I | 150 |
|-----|----------------------------------------------------------------------------------------------------|-----|
| 3.1 | Background to the proposed decision                                                                | 150 |
| 3.2 | Proposed decision concerning inclusion in Annex I                                                  | 152 |

| Monograph Volume I Table of contents | 4 | Endosulfan | December 1999 |
|--------------------------------------|---|------------|---------------|
|--------------------------------------|---|------------|---------------|

| 4.       | Further information to permit a decision to be made, or to support a review of the condi | tions and |
|----------|------------------------------------------------------------------------------------------|-----------|
| restrict | tions associated with the proposed inclusion in Annex I                                  | 154       |
| 4.1      | Identity of the active substance                                                         | 154       |
| 4.2      | Physical and chemical properties of the active substance                                 | 154       |
| 4.3      | Data on application and further information                                              | 154       |
| 4.4      | Methods of analysis                                                                      | 155       |
| 4.5      | Toxicology and metabolism                                                                | 156       |
| 4.6      | Residue data                                                                             | 157       |
| 4.7      | Environmental fate and behaviour                                                         | 158       |
| 4.8      | Ecotoxicology                                                                            | 158       |
| 4.9      | Classification, packaging and labelling                                                  | 159       |

### **LEVEL 2**

## **ENDOSULFAN**

Reasoned statement of the overall conclusions

#### 2 Reasoned statement of the overall conclusions drawn by the Rapporteur Member State

#### 2.1.1 Identity

This monograph has been prepared considering the documentation provided by three applicants: Hoechst Schering AgrEVO & Makhteshim Agan International (as a Task Force), Calliope, S.A. and B.V. Luxan.

#### Calliope was required to submit the Endosulfan manufacturer address and the location plant, this information was submitted on July 24<sup>th</sup>, 1998.

Endosulfan, 6,7,8,9,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzo-dioxathiepin-3oxide, an insecticide, is a sulphurous acid ester of a chlorinated cyclic diol. Endosulfan as manufactured consists of the two stereo isomers  $\alpha+\beta$  -endosulfan.

The applicant B.V. Luxan (Excel Industries Limited) has not submitted any acceptable data concerning the method or methods of manufacture, the specifications of purity of the active substance, the identity of isomers, impurities and additives, the maximum content of isomers and impurities, analytical profile of batches. All of this data are essential to the knowledge of the similarity of the active substances manufactured by the three different applicants.

The analytical profile of batches submitted by applicant Calliope showed that the content of one of the impurities is in some cases slightly above the FAO specifications.

Endosulfan is successfully used for controlling numerous insect pests and some mites in a wide variety of different crops. It acts via the GABA receptor system (opening the chloride transport, increasing glutamate level). It penetrates into the insect via the tracheas, by ingestion, and has some contact activity. When applied to plants, endosulfan can penetrate into plant tissue without developing systemic action. The product is hydrolysed by aqueous alkalis and acids to produce endosulfan diol. The lethal effect on the insects may be seen only after several hours (12-24h), there is no "knock down effect" first symptom is mainly tremor.

The plant protection products submitted as example for the EU Review by each one of the three applicants are Emulsifiable concentrates (EC). Hoechst Schering AgrEVO & Makhteshim Agan International (as a Task Force) have submitted the Thiodan 35EC, an emulsifiable concentrate containing 352 g of active ingredient per litre. This product is used for controlling numerous insect pests and some mites in a wide variety of crops grown in temperate, subtropical and tropical climate zones. The field of use is arable crops and greenhouse use in agriculture, horticulture, orchards, forestry and nurseries.

There exist a wide range and variety of uses of Endosulfan in the EU countries, the applicant Hoechst Schering AgrEVO & Makhteshim Agan International (as a Task Force) have carried out a review of

this uses and the use in northern EU was not considered in the evaluation. In orchards the higher application rate is in citrus (1050 g a.s/ha) and in stone fruit (800 g a.s/ha) in southern zone. In grapes the high dose rate is in southern zone with 1050 g a.s/ha, in horticulture crops the higher dose rate correspond to the use in solanaceas in green house (800 g a.s/ha) and finally it is important the dose rate recommended for cotton (840 g a.s/ha).

The method of application is conventional foliar spray using handheld equipment or motor diven boom sprayers and airborne sprayers. Number and timing of applications and duration of protection Endosulfan is preferably recommended as an early season product. The number of application is limited to 1 or 2 per year. Only under heavy insect pressure more applications are requested. Endosulfan is presented in use in combination with dimethoato, parathion-methyl and thiometan.

The applicant Calliope has submitted the plant protection product Callistar, an emulsifiable concentrate (EC) that contains 350 grams of active ingredient per litre. It is an insecticide for use in agriculture, horticulture, forestry and viticulture and for field and greenhouse use. It is act by contact and ingestion and controls chewing, sucking and boring insects and mites on a very wide range of crops. the proposed GAPs are only in France, for legume vegetables, brassica vegetables, stem vegetables, oil seed, potatoes and ornamentals. The range of dose rate is 0.26 to 0.61 kg as/ha. There are no authorised uses of Callistar yet in any of the EU member states, and the registration procedure for Callistar has been initiated in France.

The applicant B.V. Luxan (Excel Industries Ltd.) has submitted the emulsifiable concentrate (EC), called Endosulfan 35EC, for the EU review. The applicant should submit the proposed GAPs in the European Union separated in northern and southern zone, because the submitted GAPs are not clear. No data were submitted concerning to the information of authorisations in EU member states.

#### 2.1.2 Physical and chemical properties

Endosulfan is a non volatile solid. Technical compound is a mixture of two stereo-isomers named  $\alpha$  and  $\beta$ -endosulfan with melting points of 106-110 °C and 208-212 °C respectively. The isomeric mixture melts in a wide range between 70 °C and 124 °C. It is very low soluble in water and highly soluble in most of the organic solvents. **Due to the high partition coefficient (Pow > 4 ) risk for bio-accumulation must be contemplated for Endosulfan.** Hydrolysis to endosulfan-diol at pH = 9 . It is stable to photolysis but photoxidizes in air to endosulfan-sulphate. It is not flammable or autofammable not explosible and do not have oxidising properties. Most of the degradation products of Endosulfan are organochlorides that may be persistent and of environmental concern. For this compounds the different routes degradation kinetics should be studied.

Thiodan 35 EC is a light to dark brown liquid with an aromatic odour, showing a flash point closed of  $43 \pm 2$  °C. The pH-value of 7.0 is within the range that naturally occurs. The physical chemical properties allow storage at moderate temperatures for at least two years without deviation from

specification. Its viscosity, surface tension, foaming and emulsification properties indicate are acceptable for the proposed uses. Neither the emulsificable concentrate nor its spraying mixture have oxidising or reducing properties. Physico-chemical properties have been determined for Thiodan 35 EC. No further requirements are made.

Makhteshim-Agan has not provided information on its formulated plant protection product Thionex 35-EC.

The emulsifiable concentrate Callistar is neither explosive nor oxidising. The pH is somewhat low compared to that which naturally occurs in soil, but not considered to be of concern. Its stability allows storage under practical and commercial conditions. The shelf-life test (storage stability for 2 years) has not been finished yet. Callistar is claimed to be compatible with most pesticides but incompatible with strongly alkaline materials. In order to asses compatibility, the label prescribed testing before mixing with other chemicals. **This assessment is not acceptable and the physico-chemical compatibility must be studied with the formulate Callistar**.

Luxan B.V (Excel) has not provided any available documentation (Doc K) on plant protection product Endocel 35EC, this information should be required.

#### 2.1.3 Details of uses and further information

Endosulfan is used for controlling numerous insect pests and some mites in a wide variety of different crops. In addition to numerous insects Thiodan also controls gall mites (*Eriophyidae*) and soft or broad mites (*Tarsonemidae*) damaging crops.

Endosulfan acts via the GABA recptor system. It penetrates into the insect via the tracheas, by ingestion, and some contact activity. When applied to plants, endosulfan can penetrate into plant tissue without developing system action. The product is hydrolysed by aqueous alkalis and acids to produce endosulfan diol. The lethal effect on the insect may be seen only after several hours (12-24), there is no "knock down effect", first symptom is mainly tremor.

Endosulfan is for use in arable crops and greenhouse use in agriculture, horticulture, orchards, forestry and nurseries. It controls harmful organism belonging to the following families: Aphids, White flies, Thrips, Lepidoptera, Peach twig and tree borer, Bugs, Psyllids, Coleoptera, Gall midge, Mites, Bud mites, Seed midge. The main metabolite endosulfan-sulphate has partly similar and partly less good efficacy compared to endosulfan. Resistance was reported for aphids in cotton, diamond backmoth in cabbage and cotton bollworm in parts of Australia.

Synergistic effects is reported in combination with Bacillus thur. products, synthetic pyrethroids and Bauveria formulations.

The plant protection products containing Endosulfan and that were submitted as example for the evaluation of the active substance for its inclusion in the Annex I are insecticides for use in agriculture and horticulture, orchards, forestry and nurseries, arable crops and greenhouse crops. When applied endosulfan penetrates into the insect via the tracheas, by ingestion and has some contact activity. Endosulfan can penetrate into plants tissue without developing systemic action. They are used for controlling numerous insects pests and some mites in a wide variety of different crops. The dose rate in southern Europe zones varies from 320 g a.i/ha to 1050 g ai/ha and the use of endosulfan in northern Europe zones was removed from the dossier during the elaboration of this monograph.

Endosulfan is classified as "very toxic to water organisms" therefore a contamination of water has to be prevented. In case of an accident contaminated water has to be collected separately and should not be allowed to enter the drainage system. Collected water has to be treated as active susbstance.

The preferred method for disposal of endosulfan is controlled incineration by an approved industrial incineartion plant. Small volumes may also be disposed of by communal waste incineration.

The applicant B. V. Luxan (Excel Industries Ltd.) did not submit any data concerning the packaging and compatibility with packaging materials, this data are essential to calculate the operator exposure. Moreover the applicant had not take into account the endosulfan toxicity for aquatic organism for the procedures for cleaning application equipment proposed. No data concerning the procedures for destruction or decontamination of the plant protection product and its packaging were submitted.

#### 2.1.4 Classification and labelling

| Hazard symbol:        | T+, N                                                                       |
|-----------------------|-----------------------------------------------------------------------------|
| Indication of danger: | Very Toxic.                                                                 |
|                       |                                                                             |
| <b>Risk phrases:</b>  | R28: Very toxic if swallowed                                                |
|                       | R 21: Harmful in contact with skin                                          |
|                       | R26: Very toxic by inhalation                                               |
|                       | R50/53; Very toxic to aquatic organisms may cause long-term adverse effects |
|                       | in the aquatic environment                                                  |
| Safety phrases:       | \$1/2: Keep locked up and out of reach of children                          |
|                       | S4; Keep away from living quarters                                          |
|                       | S13; Keep away from food, drink and animal stuffs                           |
|                       | S20; When using do not eat or drink                                         |
|                       | S27: Take off immediately all contaminated clothing                         |

| Monograph | Volume I | Level 2 | 39 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

S28; After contact with skin, wash immediately with plenty of water
S36/37/39; Wear suitable protective clothing and gloves and eye/face
protection
S38; In case of insufficient ventilation, wear suitable respiratory equipment.
S45; In case of accident or if you feel unwell, seek medical advice
immediately (show the label where possible)
S60; This material and its container must be disposed of as hazardous waste.
S61; Avoid release to the environment.

#### 2.2 Methods of analysis

#### <u>AgrEvo</u>

AgrEvo submitted fully validated analytical methods for the analysis of the technical active substance, impurities and active ingredient in plant protection product.

For animal products only an acceptable method for liver, kidney and blood of Wistar rats has been submitted. Validation by an independent laboratory is required for this method.

For plant material many old methods, poorly validated, have been submitted. Only the analytical method for melons and vines and the method for potatoes are fully validated. For the rest of the methods no validation data are provided; these data are required to support residue trials that use those methods. Validation by an independent laboratory is also required for plant methods.

Two acceptable multi-residue methods where endosulfan is analysed are provided. One of them covers many pesticides not in use nowadays but the other is an up-dated method.

For soil method validation data and an English translation of the original report is required.

For drinking water validation data are required.

For surface water no method is provided and it is required.

A fully validated method for the analysis of air samples has been submitted.

No specific method for human plasma and body fluids is submitted. The use of the method for animal tissues validated for rats is proposed instead.

For wildlife an analytical method to determine endosulfan an its metabolites in fish is required.

#### **Calliope**

Methods provided by Calliope for technical active ingredient, purity, impurities (except impurity 1) and plant protection product are not acceptable.

A method for the determination of technical active ingredient purity and a method for impurities is required for inclusion of Calliope product in Annex 1 of Directive 91/414/EEC because are necessary to establish technical specifications of Calliope product.

No methodology was provided by Calliope for the quantitative determination of endosulfan residues in animal and human body fluids and tissues.

Methods for analysis of residues in plants provided by Calliope are not sufficiently validated. Validation and validation by an independent laboratory is required for these methods. It is pointed out that Data Protection is required for the only two fully validated methods submitted by AgrEvo.

Validation data are required to support the method for analysis of soil submitted by Calliope.

A validated method for the determination of endosulfan and its metabolite endosulfan sulphate in surface and drinking water is required to Calliope since the method submitted is not acceptable.

A method for the determination of endosulfan in air is required since the method submitted is not acceptable and Data Protection has been claimed for the method submitted by AgrEvo. A method for the determination of endosulfan in fish tissues is required.

#### 2.3 Impact on human and animal health

## 2.3.1 Effects having relevance to human and animal health arising from exposure to the active substance or to impurities contained in the active substance or to their transformation products

Following oral administration of endosulfan,, either via single dose or dietary administration, elimination of the parent compound and its metabolites is extensive and relatively rapid in a range of species of experimental animals. In rats and mice, recovery of radiolabelled test material was generally greater than 85% of the administered dose, with a majority of this excretion occurring within a few days of administration. Excretion in rodents was mainly in the faeces, with a smaller amount excreted in the urine. Similarly, elimination of endosulfan was extensive in goats (>90%), with about 50% recovered in the faeces and 40% in the urine.

In mice endosulfan and its sulphate and diol metabolites were the major faecal excretion products, with the diol metabolite excreted in the urine, while in rats, biliary excretion was extensive (up to 50%), and there was a little enterohepatic circulation form the bile. There does not appear to be appreciable bioaccumulation of endosulfan residues in body tissues, with only trace amounts of endosulfan residues found in most tissues, including the fat, of most species. In Wistar rats, kidney and lover residues were highest, although the half life for residues in these organs was only 7 days and 3 days, respectively, and kidneys residues were also higher than other tissues in goats. No residues of endosulfan or its metabolites in cow or sheep milk were detected.

The metabolites of endosulfan include endosulfan sulphate, diol, hydroxy-ether, ether, and lactone but of its metabolites are polar substances which have not yet been identified.

Dermal absorption studies *in vivo* (rats and monkeys) and *in vitro* (human:rats) were performed They suggest that initial absorption is dose related, movement through skin is low (occurring over 168 h in the rat in vivo study), endosulfan continues absorbed from skin reservoirs after skin washing and penetration as per cent rate is lower in human skin than rat skin. Dermal absorption was reported to be as high as 25% in rats, and about 20% in Rhesus monkeys.

Endosulfan has been tested for acute toxicity, primary irritation and sensitisation potential Three notifier have submitted studies. The results obtained in the studies considered acceptable are summarised in 2.3.1-1. Purity, when reported, range between 96 and 97.3% among all the studies. The followed procedures were in accordance or without significant deviation from USEPA and OECD Guidelines. Not all the studies were performed to GLP.

The acute oral median lethal dose  $LD_{50}$  of Endosulfan Technical in rats was calculated to have a range between 48 and 160 mg/kg for male and 10 and 22.7 mg/kg for female rats. These results would require an **EEC classification of "T+" (very toxic) for the technical active ingredient, if based on the more sensitive sex alone.** 

The dermal  $LD_{50}$  value for Endosulfan Technical in rats was greater than 4000 mg/kg b.w for male and 500 mg/kg b.w. for female. These results would require an EEC classification of "Xn" (harmful) for the technical active ingredient.

For Endosulfan technical an acute inhalation  $LC_{50}$  of 0.0345 mg/l air in male Wistar rats, and of 0.0126 mg/l air in females was determined. These results may require an EEC classification of "T+" (very toxic).

Skin and eye irritation studies submitted were considered not acceptable because purity of the technical product was not reported and exposition period after instillation into the eyes was very short. The applicant assumed Endosulfan should be considered not irritating to skin and eyes.

Based on the skin sensitisation studies (Buehler test), there is no evidence that Endosulfan is a contact allergen and it is not classified based on EU criteria.

In conclusion, based on acute oral toxicity studies in rats, and in accordance with EU criteria for classification, packaging and labelling of dangerous substances, Endosulfan is classified as 'very toxic', assigned the symbol "T+" and the risk phrase 'R28 very Toxic if swallowed'. Based on the dermal LD50 value in rats, it also should be classified as "Harmful" and be associated with the risk phrase "Harmful in contact with skin". Based on results of the acute inhalation study in rat, Endosulfan should be classified as 'very toxic', assigned the symbol "T+" and the risk phrase 'R26 very Toxic by inhalation' in accord with EU Guidelines.

 Table 2.3.1-1: Summary of Acute Toxicity, Primary Irritation and Dermal Sensitisation Studies with Endosulfan Technical.

| Route/Species/        | Dose range           | Vehicle         | Result                                     | Reference      |  |
|-----------------------|----------------------|-----------------|--------------------------------------------|----------------|--|
| JUA                   |                      |                 |                                            |                |  |
| Oral                  | •                    | •               |                                            | ÷              |  |
| Rat,                  | 20, 32, 50, 80       | ground-nut oil  | $LD_{50} = 48 \text{ mg/kg} (m)$           | Scholz 1971    |  |
| Sherman, m            |                      |                 |                                            |                |  |
| Rat,                  | 6.3, 8.0, 10.0, 12.5 | ground-nut oil  | $LD_{50} = 10 \text{ mg/kg} (f)$           | Scholz 1971    |  |
| Sherman, f            |                      |                 |                                            |                |  |
| Rat,                  | 50, 100, 160, 250,   | starch mucilage | $LD_{50} = 100-160 \text{ mg/kg} (m)$      | Diehl 1988     |  |
| Wistar, m/f           | 315 (m)              |                 | $LD_{50} = 22.7 \text{ mg/kg} (f)$         |                |  |
|                       | 12.5, 25, 50 (f)     |                 |                                            |                |  |
| Dermal                |                      |                 |                                            |                |  |
| Rat,                  | 3150, 4000 (m)       |                 | $LD_{50} > 4000 \text{ mg/kg} (m)$         | Diehl 1988     |  |
| Wistar, m/f           | 400, 630, 1000 (f)   |                 | $LD_{50} = 500 \text{ mg/kg} (f)$          |                |  |
| Inhalation            |                      |                 |                                            |                |  |
| Rat,                  | 0.0123, 0.0288,      | Ethanol-        | $LC_{50} = 0.0345 \text{ mg/L} (\text{m})$ | Hollander 1983 |  |
| SPF Wistar m/f        | 0.040, 0.0658 mg/L   | polyethylene    | $LC_{50} = 0.0126 \text{ mg/L} (f)$        |                |  |
|                       | (m)                  | 50:50           |                                            |                |  |
|                       | 0.0036, 0.0123,      |                 |                                            |                |  |
|                       | 0.0288, 0.040,       |                 |                                            |                |  |
|                       | 0.0658 mg/L (f)      |                 |                                            |                |  |
| Skin Sensitisation    |                      |                 |                                            |                |  |
| Guinea pig,           |                      | Polyethylene    | No Sensitiser                              | Jung 1983      |  |
| SPF Pirbright-White f |                      | glycol 40%      |                                            |                |  |

Several short-term toxicity studies were provided: a subacute oral toxicity study in rats, suchronic oral studies on rats and mice and, finally, dermal and inhalation studies on rats. The results of the studies considered as acceptable are summarised in table 2.3.1-2.

| Monograph | Volume I | Level 2 | 43 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

| Study                           | NOAEL (mg/kg | Main adverse effect              | LOAEL          | Reference and year    |
|---------------------------------|--------------|----------------------------------|----------------|-----------------------|
|                                 | bw/day)      |                                  | (mg/kg bw/day) |                       |
| Subacute studies                |              | 1                                |                | 1                     |
| <u>30-days oral rats</u> . Dose |              |                                  |                | Leist & Mayer, 1987   |
| levels: 360 and 720 ppm         |              |                                  |                | AgrEvo: IIA,          |
| (equal to 34 and 67.8           |              |                                  |                | 5.1.2.2/1             |
| mg/kg/day)                      |              |                                  |                |                       |
| Subchronic studies              |              |                                  |                |                       |
| 90-day, diet, rat.              | 3.85 (m)     | Haematological changes           | 23.41 (m)      | Barnard et al., 1985. |
| Concentrations: 0, 10, 30,      |              |                                  |                | AgrEvo IIA,           |
| 60 and 360 mg/kg feed.(         |              |                                  |                | 5.3.2.1/2             |
| equal to 0, 0.64, 1.9, 3.8      |              |                                  |                |                       |
| and 23 mg/kg/day for            |              |                                  |                |                       |
| males and 0.75, 2.3, 4.6        |              |                                  |                |                       |
| and 27 mg7kg/day for            |              |                                  |                |                       |
| females)                        |              |                                  |                |                       |
| 90-day, diet, mouse CD-1        | 2.3 (m/f)    | Lethality and neurological signs | 7.4 (m/f)      | Barnard et al., 1984. |
| Concentration 0, 2, 6, 18,      | ~ /          |                                  | ~ /            | AgrEvo IIA.           |
| and 54 mg/kg feed. (equal       |              |                                  |                | 5.3.2.4/1             |
| to 0, 0.24, 0.74, 2.13 or       |              |                                  |                |                       |
| 7.3 mg/kg/day for males         |              |                                  |                |                       |
| and 0, 0.27, 0.80, 2.39,0r      |              |                                  |                |                       |
| 7.5  mg/kg/day for              |              |                                  |                |                       |
| females)                        |              |                                  |                |                       |
| 42 day, diet, mouse             |              |                                  |                | Donaubauer et al      |
| NMRKf. Dose levels 0.           |              |                                  |                | 1985 AgrEvo IIA.      |
| 18 ppm                          |              |                                  |                | 5.3.2.5/1             |
| Other routes                    |              | l                                | 1              |                       |
| 28-day dermal, rat 0, 1, 3,     |              |                                  |                | Ebert et al 1985      |
| 9. 27 and 81 mg/kg              |              |                                  |                | AgrEvo IIA.           |
| bw/day                          |              |                                  |                | 5.3.3.1/1             |
|                                 |              |                                  |                |                       |
| 28-day dermal, rat (males       |              | A NOAEL was not determined.      |                | Dikshith et al. 1988  |
| 0, 18,75, 37,50, 62,50          |              | Transient clinical symptoms were |                | AgrEvo IIA.           |
| mg/kg bw/day, females 0.        |              | observed in the treated groups.  |                | 5.3.3.1/4             |
| 9.83, 19.66, 32.00              |              |                                  |                |                       |
| mg/kg).                         |              |                                  |                |                       |
| 29- days, nose-only             |              | No symptoms up the highest dose  |                | Hollander et al 1984  |
| inhalation, rat                 |              | tested were observed.            |                | AgrEvo IIA.           |
| 0.0005, 0.0010, 0.0020          |              |                                  |                | 5.3.3.2/1             |
| mg /l                           |              |                                  |                |                       |

The subchronic oral toxicity study in rat revealed a NOAEL of 3.85 mg/kg bw/day (m), and a NOAEL of 2.3 mg/kg bw/day (m/f) in mice A 90-days feeding study in dogs is required.

The endosulfan genotoxicity data base has been prepared using the documentation submitted by AgrEvo, Excel and Calliope in support of the application. Numerous genotoxicity tests have been conducted with endosulfan. However, evaluation of the mutagenicity is confined to tests using technical endosulfan of clearly defined specifications. Results of these tests together with the information, presented by AgrEvo, about the genotoxicity of endosulfan-diol, a endosulfan metabolite, are summarised in Table 2.3.1-3.

The conclusions about the mutagenicity of endosulfan, based in data from studies carried out with technical material of clearly defined specifications, are the following:

- Endosulfan does not induce gene mutation in bacterial or mammalian cells; and it appears to be nonmutagenic for yeast, however, results from the acceptable study cannot be considered conclusive because of its conduct.
- 2. Endosulfan was not clastogenic in cultured human lymphocytes following a short treatment but a continuous treatment without metabolic activation was not carried out.
- Endosulfan did not induce DNA damage in bacteria (rec-assay) or in cultured mammalian cell (UDS); however, negative results, from the acceptable *Saccharomyces cerevisiae* mitotic gene conversion assay, cannot be considered conclusive because of its conduct.
- 4. Endosulfan appears to be non-clastogenic in mammalian somatic cells *in vivo*. Nevertheless, in the only study, considered acceptable in evaluating the mutagenicity of endosulfan, a micronucleus test, a dose greater than 10 mg/kg should have been tested. On the other hand, Thiodan 35 induced chromosomal aberrations in hamster; although any mutagenic activity may have resulted from non active constituents included in the formulation, it could be advisable to performed one study on chromosomal aberration induction with technical endosulfan.
- 5. The information given by the two presented chromosome aberration studies precludes any conclusion on the endosulfan clastogenicity for rodent germ cells, because in both studies the purity of the test substance was not reported. On the other hand, it is unlikely that a single isolated increase in dominant lethal mutations at the high dose is related with endosulfan administration; the lack of detail in the published study makes the significance of the isolated finding questionable.
- 6. Endosulfan induced sperm abnormalities in rodents. Nevertheless, it is unclear whether this effect is biologically significant.

The overall weight of evidence from the *in vitro* and *in vivo* studies is that endosulfan does not induce gene mutation. Nevertheless, although it appears to be non-clastogenic, more studies are required in order to give a definitive conclusion.

| Monograph | Volume I | Level 2 | 45 | Endosulfan | December 1999 |  |
|-----------|----------|---------|----|------------|---------------|--|
|-----------|----------|---------|----|------------|---------------|--|

| Type of study                       | Species   | Result with most sensitive species                                       |
|-------------------------------------|-----------|--------------------------------------------------------------------------|
| In vitro studies                    | Bacteria  | Negative for gene mutation in Salmonella typhimurium & Escherichia coli. |
|                                     |           | Negative for rec-assay with Bacillus subtilis.                           |
|                                     | Yeast     | Inconclusive negative for gene mutation in Schizosaccharomyces pombe.    |
|                                     |           | and for mitotic gene conversion in Saccharomyces cerevisiae.             |
|                                     | Mammalian | Negative for gene mutation in mouse lymphoma cells.                      |
|                                     | cells     | Inconclusive negative for CA in human lymphocytes.                       |
|                                     |           | Negative for UDS in both rat hepatocytes and a human cell line.          |
| <i>In vivo</i> studies with somatic | Rodent    | Inconclusive negative for MN in mouse.                                   |
| cells                               |           |                                                                          |
| In vivo studies with germ           | Rodent    | Inconclusive positive for mouse dominant lethal test.                    |
| cells                               |           | Positive for mouse sperm abnormalities test.                             |

#### Table 2.3.1-3: Genotoxicity studies

The Long-term effect of endosulfan on rats, mice and dogs were evaluated from eight studies provided by different applicants and using the additional information found in IPCS document and Australian monograph (ANRA).

Four <u>chronic toxicity studies</u>, were performed on rats . (Keller, 1959c), mice (Arai, 1981) and . dogs (Keller, 1959b and Brunk 1989; 1990).

Chronic toxicity study on rats was carried out prior to GLP regulations and is not considered acceptable because the purity of the test substance was not reported The second study performed on mice is only a review of the original paper, thus only can be considered as additional information .

Finally, two 1-year feeding toxicity studies on dogs were presented by AgrEvo. The first study carried out on Mongrel dogs (Keller, 1959b), was performed prior to GLP regulations and is not considered acceptable for many reasons: the purity of the test substance was not reported, the higher dose level used did not induced any toxic effect and the number of dogs used by group does not permit obtaining significant results . Only, the other study carried out on Beagle dogs was conducted according to OCDE guidelines and GLPs compliance.

The <u>combined chronic /carcinogenic</u> studies were carried out on Charles River rats (Ruckman *et al.*, 1989) and on NMRI mice (Donaubauer 1989a, 1989b).

In the first case, the study was performed according to OECD: "Short-term and Long-Term toxicology group guideline" and following the GLP regulations Progressive glomerulonephrosis and aneurysms among in male rats aneurysms were detected. and, both signs were studied with more detail by

histophatology techniques by Gopinath & Cannon, (1990). A second addendum was provided by Leist et al., (1989a): the residues of  $\alpha$ -endosulfan,  $\beta$ -endosulfan, endosulfan-hydroxiether, endosulfan-sulphate, endosulfan-lactone and endosulfan-diol, were determined in the liver and kidneys of mice after a chronic (2-year) feeding. study.

In the second combined study was evaluated the chronic oral toxicity and carcinogenic potential of endosulfan in NMRI-mice during two years . The study was conducted according to OECD 451 guideline in compliance with EPA guideline and following the GLP regulations. In support of this study, the residues of  $\alpha$ -endosulfan,  $\beta$ -endosulfan, endosulfan-hydroxiether, endosulfan-sulphate, endosulfan-lactone and endosulfan-diol, were determined in the liver and kidneys (Leist. 1989b).

Both combined chronic and carcinogenic studies were summarised by Hack and published in Fd. Chem. Toxic. Vol.33, nº 11, pp: 941-950 (1995)

On the overall of these studies, no carcinogenic effect was observed in rats and mice at any Endosulfan dose tested.

| Monograph | Volume I | Level 2 | 47 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

| Table 2.3.1-4: Summary of Long-term and | l Carcinogenic acceptable studies |
|-----------------------------------------|-----------------------------------|
|-----------------------------------------|-----------------------------------|

| Study                                                                                                                                                               | Study NOAEL LOAEL |                  | AEL | Main Adverse   | <b>Reference/year</b>                                                                                                                                   |                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|-----|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                     | ррт               | mg/kg bwt/d      | ppm | mg/kg<br>bwt/d | Effect                                                                                                                                                  |                                                                                                          |
| Chronic toxicity st                                                                                                                                                 | udy               |                  |     |                |                                                                                                                                                         |                                                                                                          |
| 1-year toxicity<br>study in Beagle<br>dogs. Oral. 1 year.<br>Dose levels: 0, 3,<br>10,30<br>ppm.(equivalent<br>to 0. 0.23, 0.77<br>and 2.3<br>mg/kgbw/day).         | 10                | 0.65 m<br>0.57 f | 30  | 2.3            | LOAEL based on<br>the clinical signs<br>(violent muscular<br>contractions of the<br>abdominal<br>muscles),and<br>reductions in body<br>weights-         | Brunk (1989; 1990)<br>(AgrEvo: 5.3.2.3/3)                                                                |
| Carcinogenic stud                                                                                                                                                   | ies               |                  |     |                | ·                                                                                                                                                       |                                                                                                          |
| Osborne-Mendel<br>rats Oral. (78<br>weeks) and<br>average dose<br>levels: 0,220, 410<br>or 950 ppm for<br>males and 220<br>and 400 for<br>females<br>males/females; | Not identified    |                  |     |                | No tumours were<br>found in females;<br>and no valid<br>conclusion can be<br>drawn about<br>carcinogenicty in<br>males                                  | Thomas, LW <i>et al</i><br>(1978)<br>(AgrEvo: IIA, 5.5.1/2)<br>(AgrEvo: ANRA)<br>(Calliope: IIA, 5.5/01) |
| :B6C3F1mice (78<br>weeks<br>Oral.)Average<br>dose levels: 3.5<br>and 6.9 ppm for<br>males and 2 and<br>3.9 ppm for<br>females                                       | 3.9 (f)           | 0.58 (f)         |     |                | Owing the high<br>early mortality<br>rates, no conclusion<br>can be drawn about<br>carcinogenicty in<br>males<br>No carcinogenic<br>effects in females. | Thomas, LW <i>et al</i><br>(1978)<br>(AgrEvo: IIA, 5.5.1/2)<br>(AgrEvo: ANRA)<br>(Calliope: IIA, 5.5/01) |

| Monograph | Volume I | Level 2 | 48 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

| Study                                                                                                                                                                                                                                    | NO      | AEL                  | LO     | AEL              | Main Adverse                                                                                                                                                                                                                                                                     | Reference/year                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------|--------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                          | ррт     | mg/kg bwt/d          | ppm    | mg/kg<br>bwt/d   | Effect                                                                                                                                                                                                                                                                           |                                                                                                                                                          |
| Charles River rats<br>Oral.104 weeks<br>Dose levels:<br>0,3,7.5, 15 and 75<br>ppm (equivalent<br>to 0, 0.1, 0.3, 0.6<br>and 2.9 for males<br>and 0, 0.1, 0.4,<br>0.7 and 3.8<br>mg/kg/day for<br>females)                                | 15(m/f) | M 0.6<br>F: 0.7      | 75(m/f | M 2.9<br>F 3.8   | LOAEL based on<br>low body gain<br>weigh (m/f), low<br>food consumption<br>in females and<br>kidney alterations<br>in both sexes<br>No evidence of<br>increased<br>carcinogenicity<br>findings at any<br>dose tested.                                                            | Ruckman SA et al.,<br>(1989)<br>(AgrEvo: IIA, 5.5.1/4)<br>(AgrEvo: ANRA)<br>Hack et al., (1995)<br>(Published)<br>(AgrEvo:IIA, 5.5.1/6)                  |
| Combined<br>toxicity/carcinoge<br>nicity study, in<br>NMRI mice.<br>Oral, 24 months.<br>Dose levels:0, 2,<br>6, 18 ppm<br>(equivalent to<br>0.28, 0.84 and<br>2.51 for males<br>and 0.32,<br>0.97,and .2.86<br>mg/kg/day for<br>females) | 6       | 0.84 (m)<br>0.97 (f) | 18     | 2.51 m<br>2.86 f | LOAEL base on<br>decreased body<br>weight in males at<br>24 months and<br>decreased weight<br>in males at 24<br>months and<br>decreased weights<br>of the liver, ovaries<br>and lung in males<br>and females at 12<br>and/or 18 months.<br>No carcinogenic<br>properties in mice | Donaubauer, HH<br>(1989a, 1989b, 1990)<br>(AgrEvo: IIA,<br>5.5.2/1/2/3)<br>(AgrEvo: ANRA)<br>Hack et al., (1995)<br>(Published)<br>(AgrEvo:IIA, 5.5.1/6) |

m = malef = female

Eight studies have been conducted to evaluate endosulfan toxicity on reproductive system. They include three multigeneration studies on rats and five developmental studies, four on rats and only on rabbits- All these studies are sponsored mainly by AgrEvo company.(table 2.3.1-5)

#### Multigeneration toxicity

To establish, the maximum tolerated dosage of endosulfan for use in a multigenerational study in rats was performed a preliminary study by Edwards *et al.*, (1982). This study does not claim adherence to specific guidelines and GLP compliance.. Under the conditions of this study, it was concluded that 75 ppm (equivalent to 8.26 mg (kg/day and 8.36 mg/kg/day in males and females respectively), would be suitable fur use as the highest dose level in the subsequent multigeneration studies.

Kennedy *et a*l., (1965) study was conducted prior to the requirement of GLP and did not claim adherence to a specific guideline besides, the purity of the endosulfan was not reported, thus this study is considered as not acceptable. In addition, the dosages employed are referred to mg/kg/diet, thus it has not been possible to relate diet concentration of endosulfan to mass of endosulfan/kg bw animal/day In the study carried out by Edwards et al (1984) and Offer (1985) was evaluate endosulfan effects on the reproductive performance and developmental of F0, F1B and F2B generation rats.

Both studies were conducted to GLP compliance. Endosulfan did not affect reproductive performance or the growth or developmental of the offspring of rat over the course of a two generation study. The NOAEL for maternotoxicity was 1 mg/kg bw/day and for reproduction toxicity was 6 mg/kg bw/day. Developmental NOAEL could not be stabilised.

#### Developmental toxicity studies:

Five studies on developmental toxicity were performed, four of them on rats and one on rabbits:

1.-The first teratology study submitted was performed prior to GLP regulations and no guideline method was available at the time of the study. The study was published in Acta Pharmacol. Toxicol. vol 42: 150-152 by Gupta *et al.*, (1978). The level reporting in this published paper is not adequate for the purposes of defining an NOAEL for developmental toxicity Besides, the paper can not be considered acceptable because the purity of the test substance as the stability of the test substance and strain and age of the animals are not provided.

2.-An other study to determine the potential teratogenic of thiodan upon gravid albino rats was performed prior to GLP regulations and without any guideline specification (Haley, 1972). On the other hand, the dosages used in this study were not sufficiently high to induce any toxicity.

3.-.The only study performed according to OECD guideline referent to Teratogenicity studies and following the GLPs ,was carried out by Albrech and Baeder (1993). The NOAEL for maternotoxicty and for developmental toxicity was 2 mg/kgbw/day.

4.- A last report provide by AgrEvo company to evaluate the embriofetotoxicity in rats was designed by McKenzie et al (1980). The study was performed prior to GLP regulation and no guideline method was available at the time of the study. This study is considered as acceptable with some reservation, mainly because the replacement of animals during the study made difficult to interpret the data .

5.- Finally, one year later, the same author studied the embrio-fetal and teratogenic method nor GLP compliance. Besides, the interpretation of data is not clear .because some animals were also replacement during the study .

On the overall of these studies, non critical effect was identified to reproduction after administration of endosulfan and the fetotoxicity effects appear at maternal toxic doses.

| Monograph | Volume I | Level 2 | 50 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

| Table 2.3.1-5: Summary of | of acceptable reproduction toxicity stud | ies |
|---------------------------|------------------------------------------|-----|
|---------------------------|------------------------------------------|-----|

| Study                                                                                                                                                                                        | NOA                       | EL                                 | L LOAEL      |                         | Main Adverse                                                                                                                                                                                                     | Reference/year                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------|--------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|                                                                                                                                                                                              | ppm                       | mg/kg<br>bwt/d                     | ppm          | mg/kg<br>bwt/d          | Effect                                                                                                                                                                                                           |                                                                                               |
| Preliminary<br>study to<br>determine doses<br>used in two<br>generation study<br>in rats .Dosages:<br>0, 50, 75, 100<br>ppm                                                                  | Maternal.50               | M 6.25<br>F 5.92                   | Maternal: 75 | M 8.26<br>F 8.36        | <u>Maternal:</u> decreased<br>of food<br>consumption and<br>body weights. Litter<br>weights of dams<br>were significantly<br>decreased                                                                           | Edward et al<br>(1982)<br>AgrEvo: IIA,<br>5.6.1/2                                             |
| Two generation<br>reproduction<br>toxicity in rats.<br>Dose levels: 0, 3,<br>15, 75 ppm<br>(0.2,1, 4.99<br>mg/kg bw/day<br>for males and<br>0.24, 1.23, 6.18<br>mg/kg bw/day<br>for females) | Maternal 15<br>Reprod 75: | Maternal 1<br>Reprod 6             | Maternal:75  | Maternal:1              | <u>Maternal</u> : Increased<br>relative liver and<br>Kidney weights-                                                                                                                                             | Edwards et al.,<br>(1984) AgrEvo:<br>IIA, 5.6.1/1<br>Offer., (1985)<br>AgrEvo, IIA:<br>5.61/4 |
| Developmental<br>toxicity in rats.<br>Dose levels: 0.<br>0.66, 2 and 6<br>mg/kg bw/day                                                                                                       |                           | Maternal:2<br>Develop::2           |              | Maternal:6<br>Develop:6 | Maternal:. On the<br>basis of the deaths,<br>clinical signs and<br>decreased body<br>weight<br><u>Develop</u> : increase<br>incidence of<br>fragmented thoracic<br>vertebral centra<br>No teratogenic<br>effects | Albrech &<br>Baeder, 1993<br>AgrEvo: IIA,<br>5.6.2.1/4                                        |
| Developmental<br>toxicity in rats<br>Dose levels: 0.<br>0.66, 2 and 6<br>mg/kg bw/day                                                                                                        |                           | Maternal<br>0.66<br>Develop:2      |              | Maternal:2<br>Develop:6 | <u>Maternal</u> : decreased<br>body weight gain<br>and clinical signs.<br><u>Develop</u> : delayed<br>development and a<br>low incidence of<br>isolated skeletal<br>variation<br>No teratogenic<br>effects       | McKenzie<br>(1980)<br>AgrEvo: IIA,<br>5.6.2.1/3)                                              |
| Developmental<br>toxicity in<br>rabbits. Dose<br>levels: 0, 0.3,<br>0.7, 1.8<br>mg/kgbw/day                                                                                                  | :                         | Maternal<br>0.7<br>Develop:<br>1.8 | :            | Maternal:1.8            | <u>Maternal:</u> based on<br>Clinical signs<br>(noisy, rapid<br>breathing,<br>hyperactivity and<br>convulsions)<br>No teratogenic<br>effects                                                                     | McKenzie et al.,<br>1981<br>AgrEvo: IIA,<br>5.6.2.2/1                                         |

Two studies were reported by AgrEvo and Excel companies to evaluate delayed neurotoxicity of endosulfan (Robert & Phillips, 1983 and Gupta, 1976), nevertheless the second study was considered as not acceptable because any reference about the purity of the test substance was provided. (table 2.3.1-6)

Robert & Phillips,(1983) designated a study to determine  $LD_{50}$  and delayed neurotoxicity of endosulfan in hens 200. birds were used and allocated in three different treatment:  $LD_{50}$  determination, protection assessment and neurotoxicity assessment. To determine  $LD_{50}$  was developed a preliminary range finding study on 5 groups of 2 birds doses with different concentrations to endosulfan. On the basis of this results, 30 birds were allocated to 6 treatment groups of 5 birds each, at doses to 0, 40, 60, 90,135 and 110 mg/kg of endosulfan.

A small study was carried out to determine the protective effects of phenobarbitone, diazepam, atropine and 2-PAM when administered prior to dosing with endosulfan.

For neurotoxicity determination were used six groups of 10 birds each (including positive and negative control), treated with 96 mg/kg endosulfan (LD<sub>50</sub> calculated). Negative control birds were dose only with corn oil and positive control with 500 mg/kg TOCP in corn oil Under the conditions of this study, endosulfan did not produce any clinical signs of neurotoxicity at the LD<sub>50</sub> calculated .

| Study              | Comments                                                    | <b>Reference and years</b> |
|--------------------|-------------------------------------------------------------|----------------------------|
| type/species/ dose |                                                             |                            |
| levels             |                                                             |                            |
| Acute Delayed      | Any clinical signs of neurotoxicity at the LD <sub>50</sub> | Roberts & Phillipps        |
| Neurotoxicity in   | calculated ( $LD_{50}$ value of the 96 mg/Kg                | (1983)                     |
| hens. Dose levels  |                                                             | AgrEvo: IIA, 5.7/1         |
| 0,40,60,90,110,    |                                                             |                            |
| 135mg/kg           |                                                             |                            |
|                    |                                                             |                            |
| Neurotoxicity in   | Endosulfan produce toxic effects due to CNS                 | Gupta P(1976)              |
| Rats and mice      | stimulation and the death may be due to direct              | Excell: IIA, 5.7/02)       |
|                    | depressant effect on some vital organ of the body.          |                            |
|                    |                                                             |                            |

Table 2.3.1-6: Neurotoxicity studies

There are several supplemental studies about, <u>enzyme induction</u> (endosulfan not induce hepatic microsomal enzyme activities on mice and rats), <u>tumour promotion</u> (No inhibition to enhance the incidence of GGT-positive hepatocyte in NDEA initiated was found in male rats treated with endosulfan.),<u>endocrine system</u> (endosulfan alone and in combination, may bind to estrogen receptors and may perturb the endocrine system), <u>sperm effect (</u>endosulfan does not produced significant changes), <u>immunotoxicity (</u>endosulfan does not have any adverse effect on the immune function of laboratory animals) and <u>neurobehaviour (at highest dose levels alterations in neurobehaviour were observed with signs of frank toxicity</u>), which them the almost were provided by the applicants and . additional information to cover these items has been found from IPCS (1998). Nevertheless, this information is only a little summary of the original papers, thus they have been considered only as additional information within of summary of each item. Table 2.3.1-7.

| Monograph | Volume I | Level 2 | 52 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

| Study                                                                                                                                                                                   | Dose levels                         | Main Effects                                                                                                                                                                                                                                                                                                                                                                                                      | Reference                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Enzyme induction                                                                                                                                                                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                 |
| 3-days. Oral gavage in male mice.                                                                                                                                                       | 5 mg/kg/day                         | Cytochrome P-450 group of<br>enzymes is not significantly<br>activated.                                                                                                                                                                                                                                                                                                                                           | Robacker         et         al.,           (1981)         (AgrEvo:         IIA,           5.1.3.2/2):         IIA,         IIA, |
| Promotion study                                                                                                                                                                         |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                                                                                                                               |
| <i>In vitro</i> _metabolic<br>cooperation (V79 cells) and<br>scrape loading/dye transfer<br>(WB cells) assays<br><i>Invite</i> EAF incidence assay,<br>Oral gavage10-weeks,<br>rats(m), | Doses: 1 and 5<br>mg /Kg/<br>bw/day | <u>In vitro</u> : ENDOαβ,<br>ENDOα, ENDOβ,<br>technical Endosulfan and<br>Endosulfan-sulphate<br>metabolite were potent<br>inhibitors of intracellular<br>communication in both<br>assays in vitro. In addition<br>Endosulfan-ether inhibited<br>transfer in WB cells.<br><u>In vivo:</u> Technical<br>endosulfan produced<br>congestion of the<br>peritoneum and inner<br>organs, and increased liver<br>weights | Flodström et al,<br>(1988)<br>(AgrEvo IIA, 5.5.3/1)                                                                             |
| Endocrine system                                                                                                                                                                        |                                     | weights                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                 |
| In vitro and In vivo studies                                                                                                                                                            |                                     | Endosulfan does not meet<br>the criteria of a endocrine<br>disrupter                                                                                                                                                                                                                                                                                                                                              | Bremmer & Leist<br>(1998)<br>AgrEvo review                                                                                      |
| Effects on sperm                                                                                                                                                                        | I                                   | Γ                                                                                                                                                                                                                                                                                                                                                                                                                 | I                                                                                                                               |
| Oral short-term/chronic<br>study in male rats                                                                                                                                           | 2.5, 5. 7.5.10<br>mg/kg             | Possible deleterious effects<br>on male reproductive<br>organs (testis) and<br>byiosynthesis and secretion<br>of testosterone                                                                                                                                                                                                                                                                                     | Singh &<br>Padney(1989)<br>(Excell, IIA, 5.5/01                                                                                 |
| Oral subchronic study in male Wistar rats                                                                                                                                               | 0, 7.5, 10<br>mg/kg/day             | Testicular testosterone<br>levels remained<br>significantly decreased.                                                                                                                                                                                                                                                                                                                                            | Singh &<br>Padney(1990)<br>(Excell, IIA, 5.5/03                                                                                 |
| Immunotoxicity studies                                                                                                                                                                  |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                 |
| Oral, six week study in male<br>Wistar rats                                                                                                                                             | 0,10,30,50 ppm                      | Humoral and cellular<br>immunity was depressed at<br>doses of 30 and 50 ppm                                                                                                                                                                                                                                                                                                                                       | Banerjee         & Hussain           (1987)         (AgrEvo:           (AgrEvo:         IIA,           5.8.2.1/3)               |
| Oral study in albino rats<br>for up to 22 weeks                                                                                                                                         | 0,5,10,20 ppm                       | Marked suppression of the<br>humoral and CMI responses<br>in rats. Cellular and<br>humoral immune responses<br>were decreased in a dose-<br>time dependent pattern.                                                                                                                                                                                                                                               | Banerjee & Hussain<br>(1986)<br>(AgrEvo: IIA,<br>5.8.2.1/2)                                                                     |
| Oral Wistar rats study                                                                                                                                                                  | 0.5, 1.5, 4.5<br>mg/kgbw/day        |                                                                                                                                                                                                                                                                                                                                                                                                                   | Hack & Leist (1988)<br>(IPCS 1998)                                                                                              |
| Oral study in Wistar rats (3-weeks)                                                                                                                                                     | 20, 100, 250<br>ppm                 | At 100 ppm: reduction in body weight gain.                                                                                                                                                                                                                                                                                                                                                                        | Vos et al, (1982)<br>(IPCS 1998)                                                                                                |

#### Table 2.3.1-7 Summary of supplemental studies

| Monograph | Volume I | Level 2 | 53 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

| Study                                  | Dose levels                                                            | Main Effects                                                                                                              | Reference                               |
|----------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Neurobehavioral studies                |                                                                        |                                                                                                                           |                                         |
| Oral acute study in rats               | 25, 50, 100<br>mg/kg/day<br>(males)<br>3,6,12<br>mg/kg/day<br>(females | LOAEL: 50 and 6<br>mg/kg/bw/day male and<br>female respectively, based<br>on serious<br>neuropharmalcological<br>effects. | Bury (1997)<br>(IPCS 1998)              |
| Rats                                   | 10mmol/L                                                               | No inhibition of rat brain<br>AChE activity was<br>observed for up to 75 min<br>treatment.                                | Müller (1989)<br>(IPCS 1998)            |
| 30-daysdietary study in<br>Wistar rats | 0, 3 and 6 mg/kg/day                                                   | A significant dose–related<br>increase in motor activity<br>in both sexes at low and<br>high dose.                        | Paul, V et al., (1995)<br>(AgrEvo:ANRA) |
| 90-Days oral study in male rats        | 2 mg/kg/day                                                            | Changes in central nervous<br>system, but not impair<br>motor responses                                                   | Paul, V et al., (1993)<br>(AgrEvo:ANRA) |
| 90-Days oral study in male rats        | 2 mg/kg/day                                                            |                                                                                                                           | Paul, V et al., (1994)<br>(AgrEvo:ANRA) |

Subchronic toxicity data from two different Endosulfan metabolites were presented: the ones with Thiodan sulphate are done without GLP compliance, since the ones with Hoe 051329 fulfil the requirements of GLP. The results of these studies are summarised in Table 2.3.1-8.

| Table 2.3.1-8 Summary | of | oral | sub | ochr | onic | studies |
|-----------------------|----|------|-----|------|------|---------|
|-----------------------|----|------|-----|------|------|---------|

| Study              | NOAEL (mg/kg<br>bw/day) | Main adverse effect          | LOAEL (mg/kg<br>bw/day) | Reference and year       |
|--------------------|-------------------------|------------------------------|-------------------------|--------------------------|
| 90-day, oral, dog. | 0.75 (m/f)              | Salivation, muscular tremors | 2.5 (m/f)               | Cervenka, Kay and        |
| Thiodan Sulphate   |                         | and tonic-clonic convulsions | 2.0 (11.1)              | Calandra, 1964           |
| 90-day, oral, rat. |                         |                              |                         | Wolf and Calandra, 1965. |
| Thiodan Sulphate   |                         |                              |                         |                          |
| 90-day, oral, dog. | 9.1 male                | bile duct proliferated with  | 89.4 male               | Stammberger 1994.        |
| Hoe 051329         | 8.4 female              | fibrosis                     | 82.9 female             |                          |
| 90-day, oral, rat. | 7.8 male                | haematotoxicity and liver    | 40.2 male               | Ebert and Hack, 1996     |
| Hoe 051329         | 8.0 female              | toxicity.                    | 40.7 female             |                          |

The sub-chronic oral toxicity study with Thiodan sulphate revealed a no observed adverse effect level for the dog of 0.75 mg/kg bw/day, and with the other metabolite Hoe 051329 (Endosulfan diol) of 8.7 mg/kg bw/day (9.1 mg/kg bw/day male and 8.4 mg/kgbw/day female).

The NOAEL of Hoe 051329 (Endosulfan-diol) in the 90-day study in the rat was determined to be 7.8 mg/kg bw/day in male rats and 8.0 mg/kg bw/day in female rats, on aggregate 7.9 mg/kg bw/day for male and female rats.

Three studies using endosulfan-diol, a endosulfan metabolite, were sponsored and presented by AgrEvo. They included *in vitro* (gene mutation and UDS) and *in vivo* (micronucleus) assays. These studies are summarised in Table 2.3.1-9.

| Monograph | Volume I | Level 2 | 54 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

All studies were performed according to specific test guidelines and were GLP compliant. They were reported over the period 1992 to 1993.

Negative results were obtained in all studies.

The available genotoxicity tests show that endosulfan-diol could be considered as non genotoxic.

| ſ | In vitro studies                          | Bacteria           | Negative for gene mutation in Salmonella typhimurium & Escherichia coli. |
|---|-------------------------------------------|--------------------|--------------------------------------------------------------------------|
|   |                                           | Mammalian<br>cells | Negative for UDS in a human cell line.                                   |
|   | <i>In vivo</i> studies with somatic cells | Rodent             | Negative for MN in mouse.                                                |

 Table 2.3.1-9: Genotoxicity tests of metabolites (endosulfan-diol)

In summary, of case report of human poisoning incidents, the lowest reported dose that caused death was 35 mg/kgbw. Higher doses caused death within 1 h. The clinical signs in these patients were dominated by tonic-clonic convulsion, consistent with the observations in experimental animal.

| Monograph | Volume I | Level 2 | 55 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

| Study                        | Study NOAEL LOAEL |             | Main Adverse |                |                    |
|------------------------------|-------------------|-------------|--------------|----------------|--------------------|
|                              | ppm               | mg/kg bwt/d | ppm          | mg/kg<br>bwt/d | Effect             |
| Short-term toxicity          | y studies         |             |              |                | I                  |
| 28-days oral, rats.          | Not identified    |             | Not identifi | ied            |                    |
| Dose levels:360              |                   |             |              |                |                    |
| and 720 ppm                  |                   |             |              |                |                    |
| (equal to 34 and             |                   |             |              |                |                    |
| 67.8 mg/kg/day)              |                   |             |              |                |                    |
| 28-day dermal, rat           | Not               |             | Not identifi | ied.           |                    |
| 0, 1, 3, 9, 27 and           | identified.       |             |              |                |                    |
| 81 mg/kg bw/day              |                   |             |              |                |                    |
| 28-day dermal, rat           | Not               |             | Not identifi | ied.           |                    |
| (males 0, 18.75,             | identified.       |             |              |                |                    |
| 37.50, 62.50                 |                   |             |              |                |                    |
| mg/kg bw/day,                |                   |             |              |                |                    |
| females 0, 9.83,             |                   |             |              |                |                    |
| 19.66, 32.00                 |                   |             |              |                |                    |
| mg/kg).                      |                   |             |              |                |                    |
| 42 day, diet,                | Not               |             | Not identifi | ied.           |                    |
| mouse NMRKf.                 | identified.       |             |              |                |                    |
| Dose levels 0, 18            |                   |             |              |                |                    |
| ppm                          |                   |             |              |                |                    |
| 29- days, nose-              | Not               |             | Not identifi | ied.           |                    |
| only inhalation,             | identified.       |             |              |                |                    |
| rat                          |                   |             |              |                |                    |
| $\overline{0.0005}, 0.0010,$ |                   |             |              |                |                    |
| 0.0020 mg /l                 |                   |             |              |                |                    |
| 90-day, diet, rat.           | 60                | 3.85 (m/f)  | 360          | 23.41 (m/f)    | Haematological     |
| Concentrations: 0,           |                   |             |              |                | changes            |
| 10, 30, 60 and               |                   |             |              |                |                    |
| 360 mg/kg feed. d            |                   |             |              |                |                    |
| (equivalent to 0,            |                   |             |              |                |                    |
| 0.64,1.9, 3.8 and            |                   |             |              |                |                    |
| 23 mg/kgbw/day               |                   |             |              |                |                    |
| for males and 0,             |                   |             |              |                |                    |
| 0.75, 2.3, 4.6 and           |                   |             |              |                |                    |
| 27 mg/kgbw/day               |                   |             |              |                |                    |
| for females                  |                   |             |              |                |                    |
| 90-day, diet,                | 18                | 2.3 m/f     | 54           | 7.4 m/f        | LOAEL: based on    |
| mouse CD-1                   |                   |             |              |                | lethality and      |
| Concentration 0,             |                   |             |              |                | neurological signs |
| 2, 6, 18, and 54             |                   |             |              |                |                    |
| mg/kg feed (equal            |                   |             |              |                |                    |
| to 0, 0.24., 0.74,           |                   |             |              |                |                    |
| 2.13 or 7.3                  |                   |             |              |                |                    |
| mg/kg/day for                |                   |             |              |                |                    |
| males and 0, 0.27,           |                   |             |              |                |                    |
| 0.80, 2.39 or 7.5            |                   |             |              |                |                    |
| mg/kg/day for                |                   |             |              |                |                    |
| females).                    |                   |             |              |                |                    |

 Table 2.3.1-10: Overall Evaluation of Mammalian Toxicology

| Monograph | Volume I | Level 2 | 56 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

| Study                                                                                                                                                | NOA              | NOAEL        |     | AEL            | Main Adverse                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|-----|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                      | ррт              | mg/kg bwt/d  | ppm | mg/kg<br>bwt/d | Effect                                                                                                                                                                                                  |
| In vitro studies in<br>bacteria                                                                                                                      |                  |              |     |                | Negative for gene<br>mutation in<br>Salmonella<br>typhimurium &<br>Escherichia coli.<br>Negative for rec-<br>assay with<br>Bacillus subtilis.                                                           |
| In vitro studies in<br>Yeast                                                                                                                         |                  |              |     |                | Inconclusive<br>negative for gene<br>mutation in<br>Schizosaccharom<br>yces pombe.<br>and for mitotic<br>gene conversion<br>in Saccharomyces<br>cerevisiae.                                             |
| In vitro studies in<br>Mammalian cells                                                                                                               |                  |              |     |                | Negative for gene<br>mutation in<br>mouse lymphoma<br>cells.<br>Inconclusive<br>negative for CA<br>in human<br>lymphocytes.<br>Negative for UDS<br>in both rat<br>hepatocytes and a<br>human cell line. |
| In vivo studies<br>with somatic cells<br>in rodents                                                                                                  |                  |              |     |                | Inconclusive<br>positive for MN<br>mouse                                                                                                                                                                |
| In vivo studies<br>with germ cells in<br>rodents                                                                                                     |                  |              |     |                | Inconclusive<br>positive for<br>mouse dominant<br>lethal test.<br>Positive for<br>mouse sperm<br>abnormalities test                                                                                     |
| Long-term and can<br><u>1-year oral</u>                                                                                                              | cinogenic studie | es<br>0.65 m | 30  | 2.3            | LOAEL based on                                                                                                                                                                                          |
| toxicity study in<br>Beagle dogs.<br>Oral. 1 year.<br>Dose levels: 0, 3,<br>10,30<br>ppm.(equivalent<br>to 0. 0.23, 0.77<br>and 2.3<br>mg/kgbw/day). |                  | 0.57 f       |     |                | clinical signs<br>(violent<br>contractions of<br>the abdominal<br>muscles) and<br>reductions in<br>body weight gain                                                                                     |

| Monograph | Volume I | Level 2 | 57 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

| Study                                                                                                                                                                                                                                                        | NOAEL          |                      | LO     | AEL              | Main Adverse                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------|--------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                              | ppm            | mg/kg bwt/d          | ppm    | mg/kg<br>bwt/d   | Effect                                                                                                                                                                                                                                                                               |
| <u>Carcinogenic</u><br><u>study</u> : <u>Osborne-</u><br><u>Mendel rats</u> Oral.<br>(78 weeks) and<br>average dose<br>levels: 0,220, 410<br>or 950 ppm for<br>males and 220<br>and 400 for<br>females<br>males/females;                                     | Not identified |                      |        | bwt/d            | No tumours were<br>found in females;<br>and no valid<br>conclusion can be<br>drawn about<br>carcinogenicty in<br>males                                                                                                                                                               |
| Carcinogenic<br>study: in<br>B6C3F1mice (78<br>weeks<br>Oral.)Average<br>dose levels: 3.5<br>and 6.9 ppm for<br>males and 2 and<br>3.9ppm for<br>females                                                                                                     | 3.9 (f)        | 0.58 (f)             |        |                  | Owing the high<br>early mortality<br>rates, no<br>conclusion can be<br>drawn about<br>carcinogenicity in<br>males<br>No carcinogenic<br>effects in females.                                                                                                                          |
| Combined<br>toxicity/carcinoge<br>nic study. in<br>Charles River rats<br>Oral.104 weeks<br>Dose levels:<br>0,3,7.5, 15 and 75<br>ppm (equivalent<br>to 0, 0.1, 0.3, 0.6<br>and 2.9 for males<br>and 0, 0.1, 0.4,<br>0.7 and 3.8<br>mg/kg/day for<br>females) | 15(m/f)        | M 0.6<br>F: 0.7      | 75(m/f | M 2.9<br>F 3.8   | LOAEL based on<br>low body gain<br>weigh (m/f), low<br>food consumption<br>in females and<br>kidney alterations<br>in both sexes<br>No evidence of<br>increased<br>carcinogenicity<br>findings at any<br>dose tested.                                                                |
| Combined<br>toxicity/carcinoge<br>nic study, in<br>NMRI mice.<br>Oral, 24 months.<br>Dose levels:0, 2,<br>6, 18 ppm<br>(equivalent to<br>0.28, 0.84 and<br>2.51 for males<br>and 0.32,<br>0.97,and .2.86<br>mg/kg/day for<br>females)                        | 6              | 0.84 (m)<br>0.97 (f) | 18     | 2.51 m<br>2.86 f | LOAEL based on<br>decreased body<br>weight in males<br>at 24 months and<br>decreased weight<br>in males at 24<br>months and<br>decreased<br>weights of the<br>liver, ovaries and<br>lung in males and<br>females at 12<br>and/or 18 months.<br>No carcinogenic<br>properties in mice |

| Monograph | Volume I | Level 2 | 58 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|           |          |         |    |            |               |

| Study                                                                                                                                                                                        | idy NOAEL LOAEL           |                                    | Main Adverse    |                         |                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------|-----------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                              | ppm                       | mg/kg bwt/d                        | ppm             | mg/kg<br>bwt/d          | Effect                                                                                                                                                                                                                 |
| Preliminary study<br>to determine<br>doses used in two<br>generation study<br>in rats .Dosages:<br>0, 50, 75, 100<br>ppm                                                                     | Maternal.50               | M 6.25<br>F 5.92                   | Maternal:<br>75 | M 8.26<br>F 8.36        | <u>Maternal:</u><br>decreased of food<br>consumption and<br>body weights.<br>Litter weights of<br>dams were<br>significantly<br>decreased                                                                              |
| Two generation<br>reproduction<br>toxicity in rats.<br>Dose levels: 0, 3,<br>15, 75 ppm (0.2,1,<br>4.99 mg/kg<br>bw/day for males<br>and 0.24, 1.23,<br>6.18 mg/kg<br>bw/day for<br>females) | Maternal 15<br>Reprod 75: | Maternal 1<br>Reprod 6             | Maternal:<br>75 | Maternal:1              | <u>Maternal</u> :<br>Increased relative<br>liver and Kidney<br>weights-                                                                                                                                                |
| Developmental<br>toxicity in rats.<br>Dose levels: 0.<br>0.66, 2 and 6<br>mg/kg bw/day                                                                                                       |                           | Maternal:2<br>Develop::2           |                 | Maternal:6<br>Develop:6 | Maternal:. On the<br>basis of the<br>deaths, clinical<br>signs and<br>decreased body<br>weight<br><u>Develop</u> : increase<br>incidence of<br>fragmented<br>thoracic vertebral<br>centra<br>No teratogenic<br>effects |
| Developmental<br>toxicity in rats<br>Dose levels: 0.<br>0.66, 2 and 6<br>mg/kg bw/day                                                                                                        |                           | Maternal<br>0.66<br>Develop:2      |                 | Maternal:2<br>Develop:6 | <u>Maternal</u> :<br>decreased body<br>weight gain and<br>clinical signs.<br><u>Develop:</u> delayed<br>development and<br>a low incidence of<br>isolated skeletal<br>variation<br>No teratogenic<br>effects           |
| Developmental<br>toxicity in rabbits.<br>Dose levels: 0,<br>0.3, 0.7, 1.8<br>mg/kgbw/day                                                                                                     |                           | Maternal<br>0.7<br>Develop:<br>1.8 |                 | Maternal:<br>1.8        | <u>Maternal:</u> based<br>on<br>Clinical signs<br>(noisy, rapid<br>breathing,<br>hyperactivity and<br>convulsions)<br>No teratogenic<br>effects                                                                        |

| Monograph | Volume I | Level 2 | 59 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

| Study                                                                                 | NOAEL |             | LOAEL |                | Main Adverse                                                                               |
|---------------------------------------------------------------------------------------|-------|-------------|-------|----------------|--------------------------------------------------------------------------------------------|
|                                                                                       | ppm   | mg/kg bwt/d | ppm   | mg/kg<br>bwt/d | Effect                                                                                     |
| Acute Delayed<br>Neurotoxicity in<br>hens. Dose levels<br>0,40,60,90,110,<br>135mg/kg |       |             |       |                | Any clinical signs<br>of neurotoxicity at<br>the $LD_{50}$<br>calculated . the 96<br>mg/Kg |

#### 2.3.2 ADI

The calculation of an ADI is based on the more sensitive of the following studies, chronic, carcinogenic and reproduction toxicity in dogs, rats and mice.

ADI was established in 0.006 mg/kg/day based on the lowest NOAEL obtained in the most sensitive specie, rat , and using a safety factor of 100. (2 years dietary study in rats)

#### 2.3.3 ARfD (acute reference dose)

#### 2.3.4 AOEL

Systemic AOEL was 0.006 mg/kg bw/day based on the lower NOAEL obtained in subchronic, chronic and reproduction studies on the most sensitive specie and using a safety factor of 100. (104-weeks dietary study in rats). (Oral absorption > 90%, assessment factor =1)

#### 2.3.5 Drinking water limit

On basis that exposure through drinking water should not account for more than 10% of the ADI and that the average consumption is 2 litres of water/day for a 60 kg person, we propose a **Parametric** Value for Drinking Water =0.018 mg/l

## 2.3.6 Impact on human or animal health arising from exposure to the active substance or to impurities contained in it

Thiodan (AgrEvo) has been thoroughly tested for acute toxicity(the inhalation study was performed with Endosulfan emulsifiable concentrate (500 g/l)), primary irritation and sensitisation potential. Results obtained in these studies are summarised in Table 2.3.6-1. All studies were performed according procedures of the OECD and EPA and in compliance with GLP.

The acute oral median lethal dose  $(LD_{50})$  of Thiodan in rats was calculated to be 67 mg/kg for male and 17 mg/kg for female. According to the EU Criteria, Thiodan should be classified with the symbol T+ (very toxic) and the risk expression R28 in rats.

The acute oral median lethal dose  $(LD_{50})$  of Thiodan in mice was calculated to be 39 mg/kg for both male and female. According to the EU Criteria, Thiodan should be classified with the symbol T (toxic) and the risk expression R25 in mice.

60

The acute oral median lethal dose ( $LD_{50}$ ) of Thiodan in rabbit was determined to be 75 mg/kg for male. In the female rabbit, the oral  $LD_{50}$  was determined to be 34 mg/kg. In the sexes combined the oral  $LD_{50}$  was determined to be 50 mg/kg. According to the EU Criteria, Thiodan should be classified with the symbol T (toxic) and the risk expression R25 in rabbit. (table 2.3.6-2).

The acute dermal median lethal dose  $(LD_{50})$  of Thiodan for male rat was determined to be 412 mg/kg. For the female rat, the  $LD_{50}$  was approximately 266 mg/kg. According to the EU Criteria, Thiodan should be classified with the symbol T (toxic) and the risk expression R24.

The acute dermal median lethal dose  $(LD_{50})$  of Thiodan for rabbit was greater than 400 mg/kg. According to the EU Criteria, Thiodan should be classified with the symbol Xn (harmful) and the risk expression R21.

The inhalation study was performed with Endosulfan-emulsifiable concentrate (500 g/l). (Hoe 002671 OI EC43 A103). The acute inhalation median lethal concentration ( $LC_{50}$ ) of Endosulfan-emulsifiable concentrate (500 g/l) was determined to be 0.263 mg/l for male rats and 0.0594 for female rats. According to the EU Criteria, Endosulfan-emulsifiable concentrate (500 g/l) should be classified with the symbol T+ (very toxic) and the risk expression R26.

Material test (Thiodan) was considered to be irritant to rabbit skin. According to the EU Criteria, Thiodan should be classified as skin irritant (Xi) and the risk expression R38.

The acute eye irritation/corrosion test with Thiodan were irritant to rabbit eye. According to the EU Criteria, Thiodan should be classified as eye irritant and the risk expression R41.

A skin sensitisation study in guinea pig using the Buehler method demonstrated that Thiodan is not considered to be a skin sensitizer. According to the EU Criteria, Thiodan should not be classified as skin sensitising.

In conclusion, Thiodan might be considered very toxic by oral route in rats, and toxic for mice and rabbit. By dermal route, material test is considered toxic for rat and harmful for rabbit. Endosulfan emulsifiable concentrate (500 g/l) is very toxic by inhalation. Thiodan is irritant to skin, irritant to eye and not a skin sensitizer.

| Monograph | Volume I | Level 2 | 61 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

| Species/strain                | Sex    | <b>Route/Method</b>        | Result                                                                      | Reference         |
|-------------------------------|--------|----------------------------|-----------------------------------------------------------------------------|-------------------|
| Rat/Wistar                    | Both   | Oral                       | LD <sub>50</sub> (male)=67 mg/kg<br>LD <sub>50</sub> (female)=17 mg/kg      | Ebert. 1989a      |
| Mice/NMRI                     | Both   | Oral                       | LD <sub>50</sub> =39 mg/kg                                                  | Ebert 1989b       |
| Rabbit/NZ                     | Both   | Oral                       | LD <sub>50</sub> (male)=75 mg/kg<br>LD <sub>50</sub> (female)=34 mg/kg      | Ebert 1989d       |
| Rat/Wistar                    | Both   | Dermal                     | LD <sub>50</sub> (male)=412 mg/kg<br>LD <sub>50</sub> (female)=266 mg/kg    | Ebert.1989c       |
| Rabbit/NZ                     | Both   | Dermal                     | LD <sub>50</sub> >400 mg/kg                                                 | Ebert.1989d       |
| Rat/Wistar                    | Both   | *Inhalation                | LC <sub>50</sub> (male)=0.263 mg/l<br>LC <sub>50</sub> (female)=0.0594 mg/l | Hollander<br>1984 |
| Rabbit/NZW                    | Both   | Dermal                     | Skin Irritant                                                               | Ebert.1989d       |
| Rabbit/NZW                    | Female | Eye                        | Eye Irritant                                                                | Ebert.1989e       |
| Albino Guinea<br>pig/Himalaya | Both   | Sensitisation<br>(Buehler) | Not Sensitising                                                             | Ullmann.1986      |

Table 2.3.6-1: Summary of acute toxicity studies of Thiodan

\* Material test: Endosulfan emulsifiable concentrate (500 g/l). code: Hoe 002671 OI EC 43 A103

Callistar Endosulfan 35 EC (Calliope) has been thoroughly tested for acute toxicity (oral and dermal), primary irritation and sensitisation potential. Results obtained in these studies are summarised in Table 2.3.6-2. All studies were undertaken with a single lot (lot. 1 del 10.01.91), and were performed according procedures of the OECD (except skin sensitisation which are performed according to an adaptation of Magnusson Kligman method) and in compliance with GLP.

The acute oral median lethal dose  $(LD_{50})$  of Callistar is approximately 50 mg/kg for male and female rats ( the mortality rates indicate that the  $LD_{50}$  will be situated between 30 and 80 mg/kg). According to the EU Criteria, Callistar should be classified with the symbol T (toxic) and the risk expression R25.

The acute dermal median lethal dose ( $LD_{50}$ ) of Callistar for female rats alone is situated below 2000 mg/kg. Therefore, because 60% mortality occurred in the female group, a complete study should be performed.

Material test, Callistar, was considered to be irritant and corrosive in rabbits. According to the EU Criteria, Callistar should be classified with the symbol C (corrosive) and the risk expression R34 and with the symbol Xi (irritant) and the risk expression R38.

The acute eye irritation/corrosion test with Callistar in rabbits were irritant and due of duration of effects and according to the EU Criteria, Callistar must be considered as causing irreversible eye damage.

A skin sensitisation study in guinea pig using a modified version of Magnusson Kligman method demonstrated that Callistar is not considered to be a skin sensitizer.

| Monograph | Volume I | Level 2 | 62 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

| Species/strain               | Sex  | Route/Method                                      | Result                                                                     | Reference       |
|------------------------------|------|---------------------------------------------------|----------------------------------------------------------------------------|-----------------|
| Rat/S-D                      | Both | Oral                                              | $LD_{50}$ approx. = 50 mg/kg                                               | Halaviat. 1991a |
| Rat/Wistar                   | Both | Dermal                                            | LD <sub>50</sub> (male)>2000 mg/kg<br>LD <sub>50</sub> (female)<200 0mg/kg | Pinon 1991a     |
|                              |      | Inhalation                                        | Test not conducted                                                         |                 |
| Rabbit/NZW                   | n.a. | Dermal                                            | Irritant and corrosive to skin                                             | Halaviat 1991b  |
| Rabbit/NZW                   | n.a. | Eye                                               | Causing irreversible eye damage                                            | Halaviat 1991c  |
| Albino Guinea<br>pig/Hartley | Both | Sensitisation<br>(modified Magnusson<br>/Kligman) | Not Sensitising                                                            | Pinon 1991b     |

Table 2.3.6-2: Summary of acute toxicity of Callistar Endosulfan 35 EC

n.a: not available.

Endosulfan 35% EC has been tested for acute toxicity (oral and dermal) and skin irritation. Results obtained in these studies are summarised in Table 2.3.5-3. All studies were undertaken with a single batch of formulation (F94/-/113) and were performed according procedures of the OECD and EC and in compliance with GLP.

The acute oral median lethal dose  $(LD_{50})$  of Endosulfan 35% EC in rats was 69 mg/kg for the sexes combined. Estimated oral  $LD_{50}$  values for the males alone were 96 mg/kg and for females alone 28 mg/kg. According to the EU Criteria, Endosulfan 35% EC should be classified with the symbol T (toxic) and the risk expression R25.

The acute dermal median lethal dose  $(LD_{50})$  of Endosulfan 35% EC in rats was 1006 mg/kg for the sexes combined. Estimated dermal  $LD_{50}$  values for the males were 1450 mg/kg and for females 449 mg/kg. According to the EU Criteria, Endosulfan 35% EC should be classified with the symbol Xn (harmful) and the risk expression R21.

Material test (Endosulfan 35% EC) was considered to be irritant and corrosive to rabbit skin. According to the EU Criteria, Endosulfan 35% EC should be classified with the symbol C (corrosive) and the risk expression R34 and with the symbol Xi (irritant) and the risk expression R38.

In conclusion, Endosulfan 35% EC might be considered toxic by oral route, harmful by dermal route and irritant and corrosive to rabbit skin.

| Monograph | Volume I | Level 2 | 63 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

| Species/strain | Sex  | Route/Method  | Result                                                                                                        | Reference          |
|----------------|------|---------------|---------------------------------------------------------------------------------------------------------------|--------------------|
| Rat/Wistar     | Both | Oral          | $LD_{50}$ combined = 69 mg/kg<br>$LD_{50}$ approx. (male)= 96 mg/kg<br>$LD_{50}$ approx.(female)=28 mg/kg     | Pels Rijcken 1994a |
| Rat/Wistar     | Both | Dermal        | $LD_{50}$ combined = 1006 mg/kg<br>$LD_{50}$ approx. (male)=1450 mg/kg<br>$LD_{50}$ approx.(female)=449 mg/kg | Pels Rijcken 1994b |
|                |      | Inhalation    | Test not conducted                                                                                            |                    |
| Rabbit/NZW     | Male | Dermal        | Irritant and corrosive to skin                                                                                | Pels Rijcken 1994c |
|                |      | Eye           | Test not conducted                                                                                            |                    |
|                |      | Sensitisation | Test not conducted                                                                                            |                    |

|--|

#### 2.4 Residues

#### 2.4.1 Definition of the residues relevant to MRLs

The definition of the residue for both risk assessment and GAP monitoring purposes should provisionally be considered as the parent compound ( $\alpha$  and  $\beta$  isomers) and its main and most toxic metabolite endosulfan sulphate. This is subject to a confirmation of the validity of the proposed plant metabolic behaviour and the metabolism in animals, which must be carried out in additional experiments that will be required from the applicants.

#### 2.4.2 Residues relevant to consumer safety

Investigations on the metabolism and distribution of endosulfan and its relevant metabolites in plants have been carried out with the <sup>14</sup>C-labelled active substance on relevant crops like tomato and cucumber plants and apple trees.

According to the assessment the relevant residue of endosulfan in plant material consists of the total of the two stereoisomers  $\alpha$ -endosulfan and  $\beta$ -endosulfan, as well as of their transformation product endosulfan sulphate. Whereas shortly after the first application the residue consists only of the two stereoisomers, the metabolite endosulfan sulphate is formed later and accounts for a considerable part of the total residue in plant material.

The sum of main residue components of endosulfan (i.e.  $\alpha$ -endosulfan,  $\beta$ -endosulfan and endosulfan sulphate) vary a great deal depending upon the crop investigated. Thus, these main components reach around 95% in apple and tomato, while only reaching 50% in cucumber. Additional information should be provided dealing with the nature of metabolites found in cucumber, in particular about those present in the non-polar and polar fractions. Special attention should also be given to the lactone metabolite due to its high toxicity as it is shown in the toxicity studies. Additional experiments on metabolism in plants are required for oils seeds and root and tuber vegetables.

Animal tissue residue studies have been conducted in sheep, lactating diary cows and lactating goats. From the results of these studies it can be stated that endosulfan residues in livestock organs, in fat and muscular tissues, and milk fat consisted mainly of endosulfan sulphate and  $\alpha$ - and  $\beta$ -endosulfan and in urine of endosulfan diol. Muscular tissue contained generally lower residues than offal and fatty tissues. The highest residue levels were detected in kidney and/or kidney fat. The unchanged parent substance occurred mainly in the faeces.

Studies performed are clearly insufficient and additional experiments must be carried out. Moreover, the metabolic pathway in animals should be indicated

Only one study using radiolabelled chemicals has been carried out (Doc A14216). Moreover, this was performed using a too low dose (0.3 mg/kg). A dose around 10 mg/kg would have been adequate for this study.

There is a lack of data on recoveries of radioactivity with reference to the measured radioactivity in specific tissues, and also on the extraction schemes used. Data on the extractability of residues should be given.

Studies on laying poultry (chickens) must be carried out, including residue data in different tissues and in animal products (eggs).

Consequently, the applicants must perform additional experiments on metabolism in livestock, and these experiments should be carried out according to the objectives and recommendations of the EU Directive.

Many of the residue trials carried out did not follow the GAP conditions. Consequently, only those residue data generated according to the GAPs were considered in MRLs calculation. Further residue trials are required in the level 4 of this monograph.

The fate of endosulfan residues during processing of raw agricultural commodities was investigated in several major registered crops and for the important processing procedures.

Endosulfan residues are effectively reduced in various commodities by heating processes. The remaining residues are most often found in waste or feedingstuff fractions. Concurrently, the parts for human consumption contain considerably less residues than the raw crop material.

After solvent extraction of oil containing crop material the residue may concentrate in the crude oil, but is effectively removed during the refining process.
The high transfer factor found for pomace in tomatoes (10-20) makes it advisable to present residue data in pomace for citrus fruit and other crops. Besides, additional experiments in prunes and raisins would be necessary to demonstrate if a residue concentration takes place in these products. The same can be applied for essential oils in citrus.

Special attention should be given to the high concentration factor found in pomace, due to the important part that this product can play in animal feeding. Therefore, residue data on orange pomace should also be presented and results on livestock feeding must be considered carefully.

High deviations in the residue data for dried tea were found in the residue trials performed, which lead to excessive MRLs. Although data available seem to demonstrate a small transfer of residues to tea infusions, the high residue levels found in some of the trials together with the importance of the tea infusion in the diet make advisable to perform additional residue trials and processing studies in tea.

It is important to emphasised the high transfer factor found in soybean crude oil, which can reach a value up to 4.3 and would lead to high residue levels. Although experiments demonstrate that refined oil did not contain endosulfan residues, it is convenient to consider the unfavourable situation for crude oil.

Livestock feeding studies were performed in lactating dairy cows and lactating goats. In order to assess the residue situation in food of animal origin after feeding of fodder contaminated with endosulfan, a hypothetical feeding ratio was composed and the theoretical residue concentration in the daily diet was calculated to be 0.1 mg/kg. However, because animal feeding diets vary enormously, and the composition of animal feed varies from one country to another, different diets should be considered by the applicant trying to construct a worst case diet in calculate the 1x dose for relevant domestic animals.

The feeding trials should comprise a control group, a group treated with the expected residue level (1x dose), and groups treated with excess doses (3-5x dose and 10x dose). Accordingly, additional experiments on livestock feeding are required to compliance the EU Directive.

Studies on poultry (laying hens) are needed, including dosage groups of at least 9 animals. In this case, residue data on eggs should also be included.

The stepwise approach developed by the German BBA in their guideline Part IV, 3-10, May 1988, was followed for the theoretical estimate of the residues in rotational crops.

At harvest, the crops contained lower residue concentrations than the corresponding soil samples.

However, uptake factors (soil/plant) found for different crops show significative variations. Field tests which provide information on the actual residue situation in rotational crops are required for selected leafy vegetables in different types of soil and climatic conditions.

Based on the residue data obtained from those residue trials that were performed according to the GAPs, most of MRLs proposed by the applicant were not consistent. Consequently, most of MRLs have to be considered just as provisional until more data is made available from the additional residue trials that have been required to the applicant.

The provisional theoretical maximum daily intake (TMDI) of endosulfan residues for a 60 kg body weight person has been estimated in 0.004528 mg/kg bw. This value does not exceed the toxicologically determined Acceptable Daily Intake (ADI) of 0.006 mg/kg bw. The theoretical maximum daily intake (TMDI) of endosulfan residues has to be recalculated taking into account the new MRL resulting from the residue trials required in the Level 4 of this Monograph.

### 2.4.3 Residues relevant to worker safety

All the exposures are higher than the systemic AOEL proposed by the rapporteur, It was impossible to obtain an exposition < AOEL.

## 2.4.4 Proposed EU MRLs and compliance with existing MRLs

The current position concerning EU MRL legislation, based on Council Directive 96/32/CE and 96/33/CE and the proposed MRL calculated according to the residue trials submitted for the elaboration of this monograph are summarised in table 2.4.4-1.

| CROP                                            | EU MRL (ppm) | MRL proposed |
|-------------------------------------------------|--------------|--------------|
|                                                 |              | (ppm)        |
| 1. Fruit, fresh, dried or uncooked preserved by |              |              |
| freezing not containing added sugar; nuts       |              |              |
| I) CITRUS FRUITS                                | 1 (a)        | -            |
| II) TREE NUTS                                   | 0.1 (*)      | -            |
| III) POME FRUIT                                 | 1 (a)        | 0.5          |
| IV) STONE FRUIT                                 | 1 (a)        | 1.0 (**)     |
| VI) BERRIES & SMALL FRUIT                       |              |              |
| a) Grapes (table & wine)                        | 1 (a)        | 0.2          |
| b) Strawberries (not wild)                      | (*)          |              |
| c) Cane fruit (not wild)                        |              |              |
| - Black berry                                   | (*)          |              |
| - Rasp berry                                    | 1 (a)        |              |
| - Others                                        | 0.05 (*)     |              |
| d) Other herrises and small fruit (not wild)    |              |              |
| Currents                                        | (*)          |              |
| Gooseberry                                      | (*)          |              |
| Others                                          | ( )          |              |
| - Oulcis                                        | 0.03(*)      |              |

| <b>Table 2.4.4-1:</b> EU MRLs and MRL | proposed by the rap | porteur for endosulfan |
|---------------------------------------|---------------------|------------------------|
|---------------------------------------|---------------------|------------------------|

| Monograph | Volume I | Level 2 | 67 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

| СКОР                                                      | EU MRL (ppm)      | MRL proposed |
|-----------------------------------------------------------|-------------------|--------------|
|                                                           |                   | (ppm)        |
| ) W/111                                                   | 0.05 (*)          | (PP)         |
| e) wild berries and wild fruit<br>VI) MISCELLANEOUS ERLUT | 0.05 (*)          |              |
| Kiwi                                                      | 1 (a)             |              |
| Olives                                                    | 1(a)              |              |
| Other                                                     | 0.05(*)           |              |
| 2 Vegetable fresh and uncooked frozen or dry              | 0.05 ( )          |              |
| I) ROOT AND TUBER VEG                                     |                   |              |
| Beet root                                                 | 0.2 (a)           | _            |
| Carrot                                                    | 0.2(a)            |              |
| Celeriac                                                  | 0.2 (a)           |              |
| Radish                                                    | 0.2(a)            |              |
| Kolhrabi                                                  | 0.2 (a)           |              |
| Turnip                                                    | 0.2 (a)           |              |
| Other                                                     | 0.05*             |              |
| ID BUL B VEG                                              |                   |              |
| Onions                                                    | 1 (a)             |              |
| Other                                                     | 1 (a)             |              |
| FRUITING VEG                                              | 0.05 (*)          |              |
|                                                           | 1 (a)             | 0.5          |
| Sumanaceae<br>Cucurbits (adible pool)                     | 1(a)              | 0.5          |
| Cucurbits (endie peel)                                    | 1(a)              | 0.5          |
| Sweet com                                                 | 1(a)              | 0.5          |
| Sweet com                                                 | 0.05 (*)          |              |
| IV) DRASSICA VEO                                          | 1 (a)             |              |
| Head brassica                                             | 1(a)              |              |
| Leafy brassica                                            | 1(a)              |              |
| Leary Diassica<br>Horseradish                             | 1(a)              |              |
| I EAEV VEG & ERESH HERRS                                  | 0.03 (*)          |              |
| LEAPT VEO & TRESIT HERDS                                  | 1 (a)             |              |
| Spinach and similar                                       | 1(a)              |              |
| Watercress                                                | 1(a)              |              |
| Witloof (Endivias)                                        | 0.05 (*)          |              |
| Herbs                                                     | 0.05 (*)          |              |
| VI) LEGUME VEG                                            | 1(a)              |              |
| VID STEM VEG                                              | 1 (u)             |              |
| Edible Thistles                                           | 1 (a)             |              |
| Celervs                                                   | 1(a)              |              |
| Artichokes                                                | 1 (a)             |              |
| Leeks                                                     | 1 (a)             |              |
| Others                                                    | 0.05 (*)          |              |
| VIII) FUNGI                                               |                   |              |
| Mushroom                                                  | 1 (a)             |              |
| Wild Mushroom                                             | 0.05 (*)          |              |
| 3. Pulses                                                 | 0.05 (*)          |              |
| 4. Oil seeds                                              |                   |              |
| Leenseed                                                  | (a)               |              |
| Sunflower                                                 | (a)               |              |
| Rape seed                                                 | (a)               |              |
| Soybean                                                   | (a)               | 1.0          |
| Mushtard                                                  | (a)               |              |
| Cotton seed                                               | 0.3               | -            |
| Others                                                    | 0.1 (*)           |              |
| 5. Potatoes                                               | (a)               | 0.05         |
| 6. Tea                                                    | 30 (see Directive |              |
|                                                           | 93/58/CEE)        |              |
| 7. Hops                                                   | (c)               |              |
| Cereals :                                                 |                   |              |
| Wheat, rye, triticale, barley, oat                        | 0.1 (a)           |              |

| Monograph | Volume I | Level 2 | 68 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

| CROP            | EU MRL (ppm) | MRL proposed |
|-----------------|--------------|--------------|
|                 |              | (ppm)        |
| Corn            | 0.2 (a)      |              |
| Other           | 0.05 (*)     |              |
| Animal products |              |              |
| Fat             |              |              |
| - Poultry meat  | (a)          |              |
| - Others        | 0.1          |              |
| Milk            | 0.004        |              |
| Eggs            | (a)          |              |

(a) LOD

(b) See the article 1 and the point 2 of the article 2 of the 96/32/CE Directive.

(a) (b) (c) (d) In case other limit have been not establish on April 30<sup>th</sup> of 2000, the following MRL will be apply: (a) 0.05 (\*); (b) 0.02 (\*); (c) 0.1 (\*); (d) 0.01

Insufficient data to set up the MRL

(\*) Provisional MRL, calculated based on an insufficient number of residue trials. This value has to be confirmed by means of additional residue trials

(\*\*) Provisional MRL based on residue trials performed only in N Europe.

## 2.4.5 Proposed EU import tolerances and compliance with existing MRLs

| Crop/Commodity | Proposed MRL |
|----------------|--------------|
| Tea            | -            |
| Coffee         | 0.05 (*)     |
| Cacao          | 0.05 (*)     |
| Pinapple       | -            |

(\*) Provisional MRL, calculated based on an insufficient number of residue trials. This value has to be confirmed by means of additional residue trials

Table 2.4.5-1: Proposed import tolerances limit

(\*\*) Provisional MRL based on residue trials performed only in N Europe

- Insufficient data to set up the MRL

### 2.5 Fate and behaviour in the environment

### 2.5.1 Definition of the residues to the environment

In light of all data obtained on degradation of endosulfan in soil and water, residues can be provisionally defined as both isomers of the active substance ( $\alpha$  endosulfan and  $\beta$  endosulfan) as well as their common metabolite endosulfan sulphate.

However this definition must be considered incomplete. The degradation of endosulfan did not show any alteration of the hexaclor norborene bicycle and showed a very low mineralization (<5%). These two facts suggest a high persistence of a soil residue constituted by a number of chlorinated metabolites, which may not account individually for more than 10% of applied dose but that all together may represent high amount of it. Based on their chemical structure it may be expected that the physico-chemical properties of these compound will be similar and generally persistent and bio-accumulable. Therefore, a wider investigation of the degradation routes of this compound must be done in order to establish a proper residue definition.

2.5.2 Fate and behaviour in soil

| Monograph | Volume I | Level 2 | 69 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

; Error! Marcador no definido. Endosulfan is a labile bicyclic sulphite diester with an additional moiety containing a hexachloronorborene ring. It consists of two isomers ( $\alpha$  endosulfan and  $\beta$  endosulfan) which differ in the configuration of the isomer SO<sub>3</sub> group and the respective ring.

## ¡Error! Marcador no definido.

## • ¡Error! Marcador no definido. Aerobic degradation

Endosulfan aerobic degradation route and rate has been studied by Stumpf *et al*, 1995 (A53618); Gildemeister and Jordan, 1984 (A29680) and Stumpf, 1988 (A39424) in a variety of different soils (predominantly sandy loam and loamy sand soils) at different temperatures (21, 22 and 28°C) and application rates  $\geq$  than those recommended by GAP.

Results showed that aerobic degradation occurred via oxidation. In all studies,  $\alpha$  endosulfan degraded quickly than the isomer  $\beta$  endosulfan. The main metabolite formed was endosulfan sulphate at a rate higher than 10% of applied radioactivity (18-40% at 60 days (Gildemeister and Jordan, 1984 (A29680)) and 46.1% at 365 days (Stumpf et al, 1995 (A53618)). This compound was slowly degraded to the more polar metabolites endosulfan diol, endosulfan lacton, endosulfan ether and other unknown compounds which appeared at <10% of applied radioactivity in all studies. Non-extractable residues were lower than 50% of applied radioactivity during the assay time 60 days (Gildemeister and Jordan, 1984 (A29680)) and lower than 25% of applied radioactivity at 100 days (Stumpf *et al*, 1995 (A53618))).

The CO<sub>2</sub> production was not properly measured in any of the studies, in some studies all the volatiles were measured and with this results the mineralization of endosulfan is expected to be low (<5%).

The degradation rate of endosulfan in soil laboratory studies can be summarised as follows (table 2.5.2-1).

| ¡Error! Marcador    | TEMPERATURE | DT50 | <b>DT</b> <sub>90</sub> | $\mathbf{R}^2$ | n  |
|---------------------|-------------|------|-------------------------|----------------|----|
| no no               |             | 20   | ,,,                     |                |    |
| definido.COMPO      |             |      |                         |                |    |
| UND                 |             |      |                         |                |    |
|                     |             | 12   | 39                      | 0.89           | 6  |
|                     |             | 39   | 128                     | 0.96           | 8  |
| $\alpha$ endosulfan | 21-22°C     | 19   | 63                      | 0.89           | 8  |
|                     |             | 14   | 46                      | 0.93           | 6  |
|                     | 28          | 23   | 78                      | 0.80           | 4  |
|                     |             | 158  | 523                     | 0.92           | 11 |
|                     |             | 264  | 877                     | 0.92           | 13 |
|                     | 01 00°C     | 132  | 440                     | 0.91           | 13 |
| β endosulfan        | 21-22 C     | 108  | 357                     | 0.84           | 8  |
|                     |             | 115  | 383                     | 0.92           | 11 |
|                     | 28          | 58   | 194                     | 0.99           | 4  |
|                     |             | 98   | 326                     | 0.77           | 12 |
|                     |             | 128  | 426                     | 0.90           | 13 |
|                     |             | 90   | 299                     | 0.90           | 13 |
| Derent compound     | 21-22°C     | 92   | 305                     | 0.71           | 8  |
| ratent compound     |             | 80   | 265                     | 0.84           | 11 |

Table 2.5.2-1: Summary of DT<sub>50</sub> values (days) in soil from laboratory studies

| Monograph | Volume I | Level 2 | 70 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|           |          |         |    |            |               |

| ¡Error! Marcador | TEMPERATURE | <b>DT</b> <sub>50</sub> | DT <sub>90</sub> | $\mathbf{R}^2$ | n |
|------------------|-------------|-------------------------|------------------|----------------|---|
| no               |             |                         |                  |                |   |
| definido.COMPO   |             |                         |                  |                |   |
| UND              |             |                         |                  |                |   |
|                  |             | 27                      | 85               | 0.96           | 8 |
|                  |             | 37.5                    | 124.7            | 0.57           | 8 |
|                  | 28          | 37                      | 123              | 0.92           | 4 |

The lowest  $DT_{50}$  and  $DT_{90}$  values were observed at the highest temperatures (28±2°C) showing a direct relationship.  $DT_{50}$  and  $DT_{90}$  values for endosulfan sulphate has not been established in any study due to linear equations could not be fit from the laboratory data at the assay time (365 days for the longest study). The  $DT_{50}$  and  $DT_{90}$  values of endosulfan sulphate are required since it is a relevant metabolite in soil.

### • Anaerobic degradation

Anaerobic degradation was studied by Gildemeister *et al*, 1988 (A37589). Results showed that it proceed slower and with no significant differences between the isomers than during the aerobic degradation. In consequence, endosulfan sulphate was the main degradation product formed (15-33% of the applied radioactivity at 53 anaerobic condition days). It was accompanied by the formation of other metabolites (endosulfan diol and endosulfan lactone at <10% of the applied radioactivity) and low rates of non-extractable residues (15-33% of the applied radioactivity at 53 anaerobic condition days).

## • Photolysis

Under photolytic conditions, endosulfan has not shown to be substantially degraded, showing similar results than dark controls. Although its half live time could not be estimated, it was suggested as >200 days. Endosulfan diol was the only metabolite observed in amounts lower than 10% of the applied radioactivity. Unknown compounds and non-extractable residues were not observed.

### Field studies

Field degradation studies were conducted in Northern Europe, Southern Europe and in the United States (in climates comparable to Southern Europe). Three type of studies have been presented:

Soil dissipation studies Soil residue studies Soil accumulation studies

All of them have been carried out with the formulate substance Thiodan 35 EC.

### • Field dissipation studies

Different studies under Northern conditions have been carried out by Baetel *et al*, (A53554 and A54025) on silty loam, sandy silty loam, loamy sand and sandy loam soils at single application rates higher than those recommended by GAP, and for more than one year.  $DT_{50}$  and  $DT_{90}$  values from these studies (table 2.5.2-2).

Endosulfan

Total endosulfan residues were found in the upper soil layer (0-20 cm). A relevant metabolite (endosulfan sulphate) was identified in all soil tested. It was accounted for >10% of applied concentration one year after application in three of these studies.

Three field dissipation studies have been presented (Hacker, 1989 (A42193); Mester, 1990 (A42997) and Czarnecki *et al.*, 1992 (A51819)). These studies were performed on different soil types at application rates higher than those established by GAP and covering multiple endosulfan applications (2 or 5 per year).  $DT_{50}$  values presented by Hacker (A42193) and Mester (A42997) were estimated from endosulfan concentrations before the last application, it is considered that these studies represented worst field conditions, regarding application rate and number of applications. In all the studies it can be observed that the concentration of  $\alpha+\beta$  Endosulfan in soil before the last application was <0.05 mg/kg, therefore all the studies are considered valid . The calculation of the  $DT_{50}$  of endosulfan sulphate was considered together in the calculation.  $DT_{50}$  ( $\alpha+\beta$  Endosulfan) values were estimated after each application in cropped and bareground loamy sand soil (table 2.5.2-2).

| DT <sub>50</sub> (days) | DT <sub>90</sub> (days) | $\mathbf{R}^2$ | n  | Kinetic                    | pН  | Reference                      |
|-------------------------|-------------------------|----------------|----|----------------------------|-----|--------------------------------|
| 91.6                    | 304.2                   | 0.90           | 10 | 1 <sup>st</sup> order      | 7.1 | A53554 Silty loam soil         |
| 35.9                    | 395.9                   | 0.64           | 8  | Root 1 <sup>st</sup> order | 5.2 | A53554 Sandy silty soil        |
| 167.1                   | 555.2                   | 0.41           | 8  | 1 <sup>st</sup> order      |     |                                |
| 38.5                    | 424.6                   | 0.9            | 10 | Root 1 <sup>st</sup> order | 5.7 | A54025 Loamy sand soil         |
| 123.7                   | 410.9                   | 0.57           | 10 | 1 <sup>st</sup> order      |     |                                |
| 16.5                    | 181.8                   | 0.76           | 10 | Root 1 <sup>st</sup> order | 5.6 | A54025 Sandy loam soil         |
| 130.6                   | 433.8                   | 0.45           | 10 | 1 <sup>st</sup> order      |     |                                |
| 75.86                   | 252.02                  | 0.88           | 18 | 1 <sup>st</sup> order      |     | A42193 Sandy loam (Crop)       |
| 89.6                    | 297.7                   | 0.86           | 18 | 1 <sup>st</sup> order      |     | A42193 Sandy loam (Bareground) |
| 92.9                    | 308.8                   | 0.89           | 13 | 1 <sup>st</sup> order      | 6.7 | A42997 Clay loam (Crop)        |
| 89.5                    | 297.5                   | 0.82           | 13 | 1 <sup>st</sup> order      |     | A42997 Clay loam (Bareground)  |
| 61.10                   | 202.9                   | 0.61           | 11 | 1 <sup>st</sup> order      | 6.8 | A51819 Loamy sand (crop)       |
| 46.2                    | 153.5                   | 0.72           | 11 | 1 <sup>st</sup> order      |     | A51819 Loamy sand (Bareground) |

**Table 2.5.2-2:** DT<sub>50</sub> ( $\alpha$ + $\beta$  Endosulfan) values (days) in soils under Southern conditions from field studies

The correct calculation, with the data of the field studies, of the  $DT_{50}$  of endosulfan sulphate considering the formation and degradation process is required.

Soil residues were studied by Tiirma and Dorn, 1988 (A40218) in ten different soils after more than 3 years of use of formulated endosulfan. The maximum dosages per year were always higher than those proposed by GAP, from 0.5 to 3.2 kg as/ha. Monitoring was done 6 or 7 months after the last application. In all cases, even in areas where endosulfan was used intensively over several years, residues of parent endosulfan were lower than 10% of the applied concentration and there was no

evidence of leaching. The crop conditions do not seem to influence dissipation of endosulfan. However, residues of endosulfan sulphate (>10% of the initial concentration) were observed in some cases.

Soil accumulation was studied by Tiirmaa *et al*, 1993 (A53771). Eighth year old apple trees were treated in a loamy clay soil with 12 applications at 1.5 kg as/ha each in 4 consecutive years. Total residue (parent compound plus endosulfan sulphate) was always lower than 10% of the applied concentration at the end of each year of use. So, accumulation from one year to another should not be expected. Even though, should be taken into account, that the main metabolite endosulfan sulphate was observed at more than 10% of the initial concentrations up to 200 days after the 3rd application. Its plateau concentration rose 20-50 % of the initial concentration 5 months before the end of the study.

In summarising the results from all relevant degradation studies in soil, the following degradation scheme is proposed.

The degradation of endosulfan in soil did not show any alteration of the hexaclor norborene bicycle and showed a very low mineralisation (<5%). These two facts suggest a high persistence of a soil residue constituted by a number of chlorinated metabolites, which may not account individually for more than 10% of applied dose but that all together may represent high amount of it. Based on their chemical structure it may be expected that their physico chemical properties of these compound will be similar and generally persistent and bioaccumulable. Therefore, a wider investigation of the degradation routes of this compound must be done.



• ¡Error! Marcador no definido. Adsorption/desorption

A range of different soils were used to determine Kd and Koc values (Goerlitz and Eyrich, 1988 (A37591 and A39353).  $\alpha$  endosulfan,  $\beta$  endosulfan, endosulfan sulphate and endosulfan diol showed to be immobile in soil. All substances showed strong adsorption on soils related to organic carbon content, although this process was found to be almost completely reversible.

### • ¡Error! Marcador no definido. Leaching

Laboratory leaching studies were performed with the active substance (Gildemeister and Grundschoettel, 1985 (A31700); Gildemeister and Jordan, 1982 (A49273) and Gildemeister and Remmert, 1983 (A27287)) and the formulated product (Thier, 1975 (A49270) in different soil types.

Results showed that endosulfan had not leaching potential but, on the contrary, to be nearly immobile under laboratory conditions. Even when irrigated with unrealistic high rates of water (200 mm/48 hours) and high application rates (1.4 kg a.s./ha) (Gildemeister and Remmert, 1983 (A27287)) no residues of endosulfan or its metabolites were detected in the leachates. These results showed to be confirmed by soil field studies where endosulfan was only detected in the upper soil layers. Therefore, a ground-water contamination by the total endosulfan residues is not expected.

As the degradation route in soil is not well defined and complete it may not be discarded the formation of more polar metabolites able to reach ground water.

## 2.5.2.1 Predicted environmental concentrations is soil (PECs) (IIIA, 9.1.3)

The calculated  $PEC_s$  was for  $\alpha+\beta$  Endosulfan, the main metabolite endosulfan sulphate was not considered in this calculation since a good determination of its  $DT_{50}$  was not carried out. From the soil dissipation studies in field it can be considered that the higher amount of the endosulfan sulphate was 60% of the applied concentration (Initial PEC), multiplied by a factor of 0.9624. This estimation was confirmed by the soil accumulation study in which the plateau concentration of endosulfan sulphate rose 20-50% of the initial concentration 5 months before the end of the study, from this study it can be concluded that accumulation from one year to another would not be expected.

| Monograph | Volume I | Level 2 | 75 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

| DT <sub>50</sub> (days) | DT <sub>90</sub> (days) | $\mathbf{R}^2$ | n  | Kinetic                    | pН  | Reference                      |
|-------------------------|-------------------------|----------------|----|----------------------------|-----|--------------------------------|
| 91.6                    | 304.2                   | 0.90           | 10 | 1 <sup>st</sup> order      | 7.1 | A53554 Silty loam soil         |
| 35.9                    | 395.9                   | 0.64           | 8  | Root 1 <sup>st</sup> order | 5.2 | A53554 Sandy silty soil        |
| 167.1                   | 555.2                   | 0.41           | 8  | 1 <sup>st</sup> order      |     |                                |
| 38.5                    | 424.6                   | 0.9            | 10 | Root 1 <sup>st</sup> order | 5.7 | A54025 Loamy sand soil         |
| 123.7                   | 410.9                   | 0.57           | 10 | 1 <sup>st</sup> order      |     |                                |
| 16.5                    | 181.8                   | 0.76           | 10 | Root 1 <sup>st</sup> order | 5.6 | A54025 Sandy loam soil         |
| 130.6                   | 433.8                   | 0.45           | 10 | 1 <sup>st</sup> order      |     |                                |
| 75.86                   | 252.02                  | 0.88           | 18 | 1 <sup>st</sup> order      | 5.4 | A42193 Sandy loam (Crop)       |
| 89.6                    | 297.7                   | 0.86           | 18 | 1 <sup>st</sup> order      |     | A42193 Sandy loam (Bareground) |
| 92.9                    | 308.8                   | 0.89           | 13 | 1 <sup>st</sup> order      | 6.7 | A42997 Clay loam (Crop)        |
| 89.5                    | 297.5                   | 0.82           | 13 | 1 <sup>st</sup> order      |     | A42997 Clay loam (Bareground)  |
| 61.10                   | 202.9                   | 0.61           | 11 | 1 <sup>st</sup> order      | 6.8 | A51819 Loamy sand (crop)       |
| 46.2                    | 153.5                   | 0.72           | 11 | 1 <sup>st</sup> order      |     | A51819 Loamy sand (Bareground) |

**Table 2.5.2.1-1:** DT<sub>50</sub> of  $\alpha$ + $\beta$  endosulfan (days) in soils from filed studies

The higher value of the best fitted kinetics ( $R^2 > 0.8$ ) was  $DT_{50} = 93$  days, this  $DT_{50}$  represents a realistic worst case for all European condition

It was assumed to be  $1.5 \text{ g/cm}^3$  dry weight. The depth of the penetrated soil layer was assumed to the immobility of endosulfan. This simulates a worst case scenario, since the active substance is concentrated in the top 5 cm which is considerably less than the plough layer. Adsorption/desorption and leaching studies summarised in point B.7.2.3. Confirm the immobility of endosulfan.

Based on these assumption, predicted environmental concentrations of endosulfan ( $PEC_{soil}$ ) were calculated from the BBA draft guide based on:

The highest number of treatments, the shortest interval in between, and the single maximum application rates for each crop. This information was taken from data according to the GAP (July, 1998).

According to this scenario, the initial predicted environmental concentrations, PIEC values, have been calculated considering a crop intercept of 50% and 0%, this initial PEC are summarised in Table 2.5.2-2 and 2.5.2-3 respectively.

| Monograph | Volume I | Level 2 | 76 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

| ¡Error!<br>Marcador no<br>definido. <b>Cr</b><br><b>ops</b> | Maximum Single Treatment<br>Rate kg a.s./ha | Number of<br>Applications | Spraying<br>interval | PIEC mg<br>sa/kg single<br>application | PIEC mg<br>sa/kg several<br>applications |
|-------------------------------------------------------------|---------------------------------------------|---------------------------|----------------------|----------------------------------------|------------------------------------------|
| Citrus,<br>pome fruit<br>and wine<br>grapes                 | 1.05                                        | 2                         | 14                   | 1.40                                   | 2.66                                     |
| Cotton                                                      | 0.84                                        | 3                         | 14                   | 1.12                                   | 3.03                                     |
| Tomatoes                                                    | 0.53                                        | 2                         | 7                    | 0.70                                   | 1.37                                     |
| Potatoes                                                    | 0.53                                        | 2                         | 14                   | 0.70                                   | 1.34                                     |
| Stone fruits                                                | 0.8                                         | 3                         | 14                   | 1.06                                   | 2.89                                     |
| Cucurbits                                                   | 0.53                                        | 3                         | 7                    | 0.70                                   | 2.01                                     |
| Sugar beet                                                  | 0.5                                         | 2                         | 14                   | 0.66                                   | 1.26                                     |
| Hazel nuts                                                  | 0.8                                         | 2                         | 14                   | 1.06                                   | 2.02                                     |

 Table 2.5.2-2: Calculation of PIEC values for endosulfan assuming a crop intercept of 0%

Table 2.5.2-3: Calculation of PIEC values for endosulfan assuming a crop intercept of 50%

| Error! Marcador    | Maximum Single Treatment | Number of    | Spraying | PIEC mg      | PIEC mg       |
|--------------------|--------------------------|--------------|----------|--------------|---------------|
| no definido. Crops | Rate kg a.s./ha          | Applications | interval | sa/kg single | sa/kg several |
|                    |                          |              |          | application  | applications  |
| Citrus, pome fruit | 1.05                     | 2            | 14       | 0.70         | 1.33          |
| and wine grapes    |                          |              |          |              |               |
| Cotton             | 0.84                     | 3            | 14       | 0.56         | 1.52          |
| Tomatoes           | 0.53                     | 2            | 7        | 0.35         | 0.69          |
| Potatoes           | 0.53                     | 2            | 14       | 0.35         | 0.67          |
| Stone fruits       | 0.8                      | 3            | 14       | 0.53         | 1.44          |
| Cucurbits          | 0.53                     | 3            | 7        | 0.35         | 1.00          |
| Sugar beet         | 0.5                      | 2            | 14       | 0.33         | 0.63          |
| Hazel nuts         | 0.8                      | 2            | 14       | 0.53         | 1.01          |

Based on these PIEC, the time weighted average predicted environmental concentration in soil (PEC<sub>TWA</sub>) have been calculated, three cases have been considered as a worst case: citrus, cotton and cucurbit. They are summarised in tables 2.5.2-3, 2.5.2-4 and 2.5.2-5:

| Monograph | Volume I | Level 2 | 77 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

| Days | PECs | TWA-PECs |
|------|------|----------|
| 0    | 1.33 | 1.33     |
| 1    | 1.32 | 1.32     |
| 2    | 1.31 | 1.32     |
| 4    | 1.29 | 1.31     |
| 7    | 1.26 | 1.29     |
| 14   | 1.18 | 1.25     |
| 21   | 1.13 | 1.23     |
| 28   | 1.08 | 1.20     |
| 42   | 0.97 | 11.14    |
| 86   | 0.70 | 0.98     |
| 156  | 0.41 | 0.78     |
| 286  | 0.16 | 0.55     |
| 351  | 0.09 | 0.47     |

 Table 2.5.2-3: Estimated PECs and TWA-PECs after last application in citrus fruit and assuming a crop intercept of 50%.

Table 2.5.2-4: Estimated PECs and TWA-PECs after last application in cotton and assuming a crop

| Days | PECs | TWA-PECs |  |  |  |  |  |  |
|------|------|----------|--|--|--|--|--|--|
| 0    | 1.52 | 1.52     |  |  |  |  |  |  |
| 1    | 1.51 | 1.51     |  |  |  |  |  |  |
| 2    | 1.49 | 1.50     |  |  |  |  |  |  |
| 4    | 1.45 | 1.49     |  |  |  |  |  |  |
| 7    | 1.44 | 1.48     |  |  |  |  |  |  |
| 14   | 1.36 | 1.44     |  |  |  |  |  |  |
| 21   | 1.29 | 1.40     |  |  |  |  |  |  |
| 28   | 1.23 | 1.37     |  |  |  |  |  |  |
| 42   | 1.11 | 1.30     |  |  |  |  |  |  |
| 72   | 0.88 | 1.17     |  |  |  |  |  |  |
| 152  | 0.48 | 0.90     |  |  |  |  |  |  |
| 272  | 0.20 | 0.65     |  |  |  |  |  |  |
| 337  | 0.12 | 0.55     |  |  |  |  |  |  |

intercept of 50%.

| Monograph | Volume I | Level 2 | 78 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

| Days | PECs | TWA-PECs |
|------|------|----------|
| 0    | 1.00 | 1.00     |
| 1    | 0.99 | 1.00     |
| 2    | 0.99 | 0.99     |
| 4    | 0.97 | 0.99     |
| 7    | 0.95 | 0.98     |
| 14   | 0.90 | 0.95     |
| 21   | 0.86 | 0.93     |
| 28   | 0.81 | 0.90     |
| 42   | 0.73 | 0.86     |
| 136  | 0.36 | 0.63     |
| 286  | 0.11 | 0.41     |
| 351  | 0.07 | 0.35     |

 Table 2.5.2-5: Estimated PECs and TWA-PECs after last application in cucurbit and assuming a crop intercept of 50%.

No accumulation of parent endosulfan ( $\alpha+\beta$  endosulfan) is expected due to continuous use of endosulfan, the highest PECs is 1.52 mg a.s/kg. However, an accumulation of the endosulfan sulphate can be expected due to a continuous use during several years of endosulfan. Therefore the PEC and the plateau concentration for endosulfan sulphate should be estimated by the applicant, . So, its DT<sub>50</sub> should be estimated. As a worst case estimation the highest expected concentration of endosulfan sulphate will be 0.88 mg/kg.

## 2.5.3 Fate and behaviour in water

### • ¡Error! Marcador no definido. Hydrolysis

The hydrolysis half live of endosulfan was studied by Goerlitz and Kloeckner, 1982 (A31069) and this study was considered unacceptable. A second study carried out by Goerlitz and Rutz, 1989 (A40003) was considered acceptable and studied the hydrolysis of endosulfan at different pH (5, 7 and 9). The rate of hydrolysis of  $\alpha$  endosulfan and  $\beta$  endosulfan was extremely dependent of pH. Under acidic conditions no hydrolysis could be observed (>200 days), in a neutral medium the rate was moderate (10-19 days) and in an alkaline environment, it was very rapid (<1 day). In all cases, the only hydrolysis product identified was endosulfan diol, which occurred at >50% of the applied radioactivity.

#### • ¡Error! Marcador no definido. Photolysis

The photolytic degradation route of endosulfan at a wavelenght of <290 nm, was studied by Schumacher et al, 1973 (A25698); Dujera and Mukerjee, 1982 (A27138); Stumpf and Schink, 1988 (A37588) and Stumpf, 1988 (A37588). Results from these studies showed that photolysis can not be considered as an important degradation route due to the fact that both isomers are photolytically estable. In consequence, no relevant metabolites were detected.

| Monograph | Volume I | Level 2 | 79 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

### • ¡Error! Marcador no definido. Biological degradation

None study was submitted concerning the biological degradation of endosulfan. The degradation in natural water (river and sea water) was studied in three trials, it is concluded that the main degradation route of endosulfan in water is the hydrolysis and that it is pH dependent.

### • ¡Error! Marcador no definido. Water /sediment studies

Water /sediment studies have been provided by Gildemeister, 1985 (A31182); Stumpf, 1990b (A44231) and Cotham and Bidleman, 1989 (A41218), this last study was considered not valid since no data about degradation kinetics was submitted. All of them showed low  $DT_{50}$  values (Table 2.5.3-1).

| Error! Marcador no  | System     | Total system     |                |    |                   |                |   | Water phase      |                |   |
|---------------------|------------|------------------|----------------|----|-------------------|----------------|---|------------------|----------------|---|
| definido.Study      |            | Total en         | dosulfa        | an | Parent endosulfan |                |   | Total endosulfan |                |   |
| ¡Error! Marcador no |            | DT <sub>50</sub> | $\mathbf{R}^2$ | n  | DT <sub>50</sub>  | $\mathbf{R}^2$ | n | DT <sub>50</sub> | $\mathbf{R}^2$ | n |
| definido.           |            | (days)           |                |    | (days)            |                |   | (days)           |                |   |
| ¡Error! Marcador no |            | × • • >          |                |    |                   |                |   | × • /            |                |   |
| definido.           |            |                  |                |    |                   |                |   |                  |                |   |
| Gildemeister, 1985  | River main | -                | -              | -  | 12                | 0.92           | 7 | -                | -              | - |
| (A31182)            | Gravel pit | -                | -              | -  | 9.5               | 0.85           | 6 | -                | -              | - |
| Stumpf, 1990b       | River main | 21               | 0.82           | 8  | 12                | 0.70           | 8 | 15               | 0.86           | 8 |
| (A44231)*           | Gravel pit | 18               | 0.83           | 8  | 10                | 0.87           | 8 | 12               | 0.85           | 8 |

Table 2.5.3-1: Summary of DT<sub>50</sub> values from water/sediment studies

\* = Data presented by Stumpf, 1990 (A44231) were based on results from Gildemeister, 1985 (A31182).

The route of degradation was studied by Gildemeister, 1985 (A31182). Under these conditions two relevant metabolites were identified, endosulfan sulphate and endosulfan hydrocarboxylic acid which were accounted for >10% of applied radioactivity. Other different metabolites as endosulfan lactone, endosulfan diol, endosulfan ether and an unidentified compound were individually accounted at <10% of the applied radioactivity. The <sup>14</sup>CO<sub>2</sub> detected in the traps throughout the study was < 0.1%. Volatile compounds were always lower than 10% of the applied radioactivity (2-4%). Endosulfan and its metabolites showed a quick adsorption to sediment. The DT values for the parent compound and the metabolites in sediment were not calculated, the residue is strongly absorbed to the sediment and this fact can affect to its bioavailability. Moreover the detected metabolites were the extractable an effort should be done to characterize the bound residues that they were 20% of the applied radioactivity and the plateu were not got.

Additional information has been provided by a field study (Cornaby *et al*, 1989 (A41298). After three applications of endosulfan (1.12 kg as/ha) in a field cropped with tomatoes, the concentrations of  $\alpha$  endosulfan,  $\beta$  endosulfan and endosulfan sulphate were determined in two experimental ponds after spray and runoff events. Immediately after spray drift events, 0.257-0.053 µg/L of total endosulfan were found in the water phase. Only after forced runoff events concentrations rose levels of 1.31-0.583 µg/L. They decreased to about 0.011 µg/L after 3-6 weeks. The concentrations were noticeably higher in the sediments. Thus, 49.2-99.1 µg/mg were determined 0-1 week after the runoff event. Based on these results, it can be stated that high endosulfan concentrations in water could mainly occur after runoff events. In all concentration ranges a relatively rapid degradation of endosulfan looked to occur.

80

It can be concluded that the main degradation routes for endosulfan in water are hydrolysis since photolysis is not observed under environmental conditions. Its half life shows variability related to the water conditions, mainly pH. Under typical environmental conditions (pH = 7 and water/sediment systems) endosulfan  $DT_{50}$  can be expected to range from 10 to 12 days for parent endosulfan. The DT values for the total residue in water, sediment and in the total system should be calculated correctly taking into account the process of formation and degradation a good kinetic should be proposed.

Two main metabolites were identified under these conditions, endosulfan sulphate and endosulfan hydroxylic acid. Endosulfan diol, which was accounted for >10% of applied radioactivity in the hydrolysis degradation route, was only observed at lower rates in the water/sediment studies. However, poor information is available about fate and behaviour of endosulfan for this compartment. So, this process still need to be further investigated.

A correct determination of  $DT_{50}$  and  $DT_{90}$  values of parent endosulfan and its metabolites in water, sediment and total system should be required, a correct degradation kinetics (route and rates) should be proposed. The field studies submitted clearly showed the importance of the runoff in the endosulfan concentrations in water, therefore proper scenarios for the risk assessment of endosulfan in the crops and conditions included in the intended uses should be required.

### 2.5.3.1 Impact on water treatment procedures

Taking into account that conventional and natural water treatment procedures generally maintain alkalinic conditions in the medium, the endosulfan degradation rate is expected to be quick (4-7 hours) for the compound present in the medium. Therefore, endosulfan can be significatively degraded and diluted before arriving to the treatment system.

## 2.5.3.2 Predicted environmental concentrations in surface water and in ground water (PEC<sub>SW</sub>, PEG<sub>GW</sub>)

• ¡Error! Marcador no definido. Surface water (PEC<sub>sw</sub>)

The environmental concentrations in surface water ( $PEC_{sw}$ ) for endosulfan have been calculated from the BBA draft guide based on:

The maximum single application rates, the number of treatments and the intervals in between for each crop (SI).

A buffer zone from 0 to 50 m.

A deep water medium of 30 cm and 1 m.

 $DT_{50} = 15$  days. This value has been estimated as the high value of the total endosulfan concentrations ( $\alpha + \beta$  + endosulfan sulphate) in the water phase of two different sediment water systems (Stumpf, 1990 (A44231)).

According to this scenario, the initial PIEC values were estimated. Based on these results, actual concentrations (Ct) at different times and time weighted average concentrations were estimated as:

$$C_{t} = C_{0} \times e^{-kt}$$
$$C_{TWA} = C_{0} \times (1 - e^{-kt})/kt$$

For crops with multiple applications, initial concentrations after each endosulfan use (PIECn) were estimated as:

PIECn = PIEC + concentration of endosulfan after Spray Interval (C<sub>t=SI</sub>)

Additionally, actual concentrations (Ct) at different times and time weighted average concentrations after each application were also calculated.

Due to the high quantity of data, a summary of the most representative crops and conditions and their respective PIEC values and  $C_t$ ,  $C_{TWA}$  concentrations after last application are expressed in tables 2.5.3.2-1 and 2.5.3.2-2.

| Сгор         | Application<br>rate | Nº | SI   | Distance | Drift | Initial PECsw (µg as |           |
|--------------|---------------------|----|------|----------|-------|----------------------|-----------|
|              |                     |    | days | m        | %     | 0.3 m depth          | 1 m depth |
| Citrus       | 1.05                | 2  | 14   | 0        | 100.0 | 350.00               | 105       |
|              |                     |    |      | 3        | 15.5  | 54.25                | 16.275    |
|              |                     |    |      | 5        | 10.0  | 35.00                | 10.5      |
|              |                     |    |      | 10       | 4.5   | 15.75                | 4.725     |
|              |                     |    |      | 15       | 2.5   | 8.75                 | 2.625     |
|              |                     |    |      | 20       | 1.5   | 5.25                 | 1.575     |
|              |                     |    |      | 30       | 0.6   | 2.10                 | 0.63      |
|              |                     |    |      | 40       | 0.4   | 1.40                 | 0.42      |
|              |                     |    |      | 50       | 0.2   | 0.70                 | 0.21      |
| Vineyards    | 1.05                | 2  | 14   | 0        | 100.0 | 350.00               | 105       |
|              |                     |    |      | 3        | 7.5   | 26.25                | 7.875     |
|              |                     |    |      | 5        | 5.0   | 17.50                | 5.25      |
|              |                     |    |      | 10       | 1.5   | 5.25                 | 1.575     |
|              |                     |    |      | 15       | 0.8   | 2.80                 | 0.84      |
|              |                     |    |      | 20       | 0.4   | 1.40                 | 0.42      |
|              |                     |    |      | 30       | 0.2   | 0.70                 | 0.21      |
|              |                     |    |      | 40       | 0.2   | 0.70                 | 0.21      |
|              |                     |    |      | 50       | 0.2   | 0.70                 | 0.21      |
| Arable crops | 0.84                | 3  | 14   | 0        | 100.0 | 280.00               | 84.00     |
| (cotton)     |                     |    |      | 1        | 4.0   | 11.20                | 3.36      |
|              |                     |    |      | 3        | 1.0   | 2.80                 | 0.84      |
|              |                     |    |      | 5        | 0.6   | 1.68                 | 0.50      |
|              |                     |    |      | 10       | 0.4   | 1.12                 | 0.34      |
|              |                     |    |      | 15       | 0.2   | 0.56                 | 0.17      |
|              |                     |    |      | 20       | 0.1   | 0.28                 | 0.08      |
|              |                     |    |      | 30       | 0.1   | 0.28                 | 0.08      |
| Arable crops | 0.53                | 3  | 7    | 0        | 100.0 | 176.67               | 53        |
| (Cucumber)   |                     |    |      | 1        | 4.0   | 7.07                 | 2.12      |
|              |                     |    |      | 3        | 1.0   | 1.77                 | 0.53      |
|              |                     |    |      | 5        | 0.6   | 1.06                 | 0.318     |
|              |                     |    |      | 10       | 0.4   | 0.71                 | 0.212     |
|              |                     |    |      | 15       | 0.2   | 0.35                 | 0.106     |
|              |                     |    |      | 20       | 0.1   | 0.18                 | 0.053     |
|              |                     |    |      | 30       | 0.1   | 0.18                 | 0.053     |

| <b>Table 2.5.3.2-1</b> : PIEC <sub>sw</sub> | values for the | e selected crops                      | after the last | application |
|---------------------------------------------|----------------|---------------------------------------|----------------|-------------|
| = 0.0 - 0 - 0 - 0 - 0 - 0 - 5 W             |                | · · · · · · · · · · · · · · · · · · · |                |             |

| Monograph | Volume I | Level 2 | 83 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

|              |                |                           |        |        | TWA-   | PEC <sub>sw</sub> (µ | ıg as/L) |        |        |        |
|--------------|----------------|---------------------------|--------|--------|--------|----------------------|----------|--------|--------|--------|
| Crop         | Water distance | Days after last treatment |        |        |        |                      |          |        |        |        |
|              | (m)            | 0                         | 1      | 2      | 4      | 7                    | 14       | 21     | 28     | 42     |
| Citrus fruit | 0              | 533.28                    | 521.14 | 509.38 | 486.89 | 455.62               | 392.66   | 341.30 | 299.14 | 235.32 |
|              | 3              | 82.66                     | 80.78  | 78.95  | 75.47  | 70.62                | 60.86    | 52.90  | 46.37  | 36.47  |
|              | 5              | 53.33                     | 52.11  | 50.94  | 48.69  | 45.56                | 39.27    | 34.13  | 29.91  | 23.53  |
|              | 10             | 24.00                     | 23.45  | 22.92  | 21.91  | 20.50                | 17.67    | 15.36  | 13.46  | 10.59  |
|              | 15             | 13.33                     | 13.03  | 12.73  | 12.17  | 11.39                | 9.82     | 8.53   | 7.48   | 5.88   |
|              | 20             | 8.00                      | 7.82   | 7.64   | 7.30   | 6.83                 | 5.89     | 5.12   | 4.49   | 3.53   |
|              | 30             | 3.20                      | 3.13   | 3.06   | 2.92   | 2.73                 | 2.36     | 2.05   | 1.79   | 1.41   |
|              | 40             | 2.13                      | 2.08   | 2.04   | 1.95   | 1.82                 | 1.57     | 1.37   | 1.20   | 0.94   |
|              | 50             | 1.07                      | 1.04   | 1.02   | 0.97   | 0.91                 | 0.79     | 0.68   | 0.60   | 0.47   |
| Vineyards    | 0              | 533.28                    | 521.14 | 509.38 | 486.89 | 455.62               | 392.66   | 341.30 | 299.14 | 235.32 |
|              | 3              | 40.00                     | 39.09  | 38.20  | 36.52  | 34.17                | 29.45    | 25.60  | 22.44  | 17.65  |
|              | 5              | 26.66                     | 26.06  | 25.47  | 24.34  | 22.78                | 19.63    | 17.07  | 14.96  | 11.77  |
|              | 10             | 8.00                      | 7.82   | 7.64   | 7.30   | 6.83                 | 5.89     | 5.12   | 4.49   | 3.53   |
|              | 15             | 4.27                      | 4.17   | 4.08   | 3.90   | 3.64                 | 3.14     | 2.73   | 2.39   | 1.88   |
|              | 20             | 2.13                      | 2.08   | 2.04   | 1.95   | 1.82                 | 1.57     | 1.37   | 1.20   | 0.94   |
|              | 30             | 1.07                      | 1.04   | 1.02   | 0.97   | 0.91                 | 0.79     | 0.68   | 0.60   | 0.47   |
|              | 40             | 1.07                      | 1.04   | 1.02   | 0.97   | 0.91                 | 0.79     | 0.68   | 0.60   | 0.47   |
|              | 50             | 1.07                      | 1.04   | 1.02   | 0.97   | 0.91                 | 0.79     | 0.68   | 0.60   | 0.47   |
| Cotton       | 0              | 503.4                     | 491.9  | 480.8  | 459.6  | 430.1                | 370.7    | 322.2  | 282.4  | 222.1  |
|              | 1              | 20.14                     | 19.68  | 19.23  | 18.38  | 17.2                 | 14.83    | 12.89  | 11.3   | 8.885  |
|              | 3              | 5.034                     | 4.919  | 4.808  | 4.596  | 4.301                | 3.707    | 3.222  | 2.824  | 2.221  |
|              | 5              | 3.02                      | 2.952  | 2.885  | 2.758  | 2.581                | 2.224    | 1.933  | 1.694  | 1.333  |
|              | 10             | 2.014                     | 1.968  | 1.923  | 1.838  | 1.72                 | 1.483    | 1.289  | 1.13   | 0.889  |
|              | 15             | 1.007                     | 0.984  | 0.962  | 0.919  | 0.86                 | 0.741    | 0.644  | 0.565  | 0.444  |
|              | 20             | 0.503                     | 0.492  | 0.481  | 0.46   | 0.43                 | 0.371    | 0.322  | 0.282  | 0.222  |
|              | 30             | 0.503                     | 0.492  | 0.481  | 0.46   | 0.43                 | 0.371    | 0.322  | 0.282  | 0.222  |
| Cucumber     | 0              | 397                       | 388    | 379.2  | 362.5  | 339.2                | 292.3    | 254.1  | 222.7  | 175.2  |
|              | 1              | 15.88                     | 15.52  | 15.17  | 14.5   | 13.57                | 11.69    | 10.16  | 8.908  | 7.008  |
|              | 3              | 3.97                      | 3.88   | 3.792  | 3.625  | 3.392                | 2.923    | 2.541  | 2.227  | 1.752  |
|              | 5              | 2.382                     | 2.328  | 2.275  | 2.175  | 2.035                | 1.754    | 1.525  | 1.336  | 1.051  |
|              | 10             | 1.588                     | 1.552  | 1.517  | 1.45   | 1.357                | 1.169    | 1.016  | 0.891  | 0.701  |
|              | 15             | 0.794                     | 0.776  | 0.758  | 0.725  | 0.678                | 0.585    | 0.508  | 0.445  | 0.35   |
|              | 20             | 0.397                     | 0.388  | 0.379  | 0.362  | 0.339                | 0.292    | 0.254  | 0.223  | 0.175  |
|              | 30             | 0.397                     | 0.388  | 0.379  | 0.362  | 0.339                | 0.292    | 0.254  | 0.223  | 0.175  |

Table 2.5.3.2-2: TWA-PEC<sub>sw</sub> values at 48h, 96 h and 21 days for the selected crops after the last application

As can be observed from the tables above, the higher concentrations of endosulfan in water should be expected for orchards and cotton. In fact, they are treated with the highest application rates and show the highest drift values.

Based on the results of the field study the main exposure route for endosulfan is the runoff, therefore proper scenarios for the risk assessment of endosulfan in the crops and conditions included in the intended uses should be required.

| Monograph | Volume I | Level 2 | 84 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|           |          |         |    |            |               |

## • Ground water (PEC<sub>GW</sub>)

As a result of laboratory studies on leaching and adsorption/desorption from soil, endosulfan and endosulfan sulphate endosulfan diol can be regarded as immobile in soil. A complete and rapid adsorption to the sediment is observed in water/sediment studies. So, a ground water contamination by parent endosulfan is not expected. However, as the degradation route in soil is not well defined and complete, it may not be discarded the formation of more polar metabolites able to reach ground water.

## • Sediment (PECs)

Predicted environmental concentrations in sediment can not be estimated due to  $DT_{50}$  for parent or total endosulfan have not been studied by the applicant.

## 2.5.4 Fate and behaviour in air

Endosulfan is expected to be evaporated from soil. Atmospheric concentrations resulted in large summerwinter differences where the highest concentrations are always detectable close to the time of application. It is mainly due to after spraying endosulfan ( $\alpha$  isomer >  $\beta$  isomer) is quickly evaporated (25 to 63.7%). Its half life in air (DT<sub>50</sub> value) ranges from 8.5 to 27 days.

A high rates of endosulfan are expected to be evaporated from soil.

## 2.5.4.1 Predicted environmental concentrations in air (PEC<sub>A</sub>)

Information about predicted environmental concentrations have not been submitted by the applicant. However, a high rate of evaporation should be expected.

## 2.6 Effects on non-target species

#### **2.6.1** Effects on terrestrial vertebrates

The acute and chronic toxicity studies presented by the applicant indicate that technical endosulfan has a potential risk on birds. The applicant has not submitted studies on the plant protection product. The toxicity data in birds used for the risk assessment are summarised in the next table.

| Monograph | Volume I | Level 2 | 85 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

| Acute oral               | Route   | Exposure         | Chemical                      | LD <sub>50</sub> | mg/kg           | Doc.          | Study              | Authors                              | Remark |
|--------------------------|---------|------------------|-------------------------------|------------------|-----------------|---------------|--------------------|--------------------------------------|--------|
| Bobwhite<br>quail        | Gavage  | Single<br>gavage | Technical<br>grade<br>97.2%   | 42<br>(35-56     | )               | No.<br>A27035 | GLP                | Roberts &<br>Phillips,<br>1983 a     |        |
| Mallard<br>Duck          | gavage  | Single<br>gavage | Technical<br>97.2%            | 28<br>(22-36     | )               | A27036        | GLP                | Roberts &<br>Phillips,<br>1983 b     |        |
| Short-term<br>toxicity   | Route   | Exposure         | Chemical                      | LC               | C <sub>50</sub> | Doc no.       | Study              | Authors                              | Remark |
|                          |         |                  |                               | ppm              | mg/k<br>g/d     |               |                    |                                      |        |
| Japanese<br>quail        | dietary | 5 days           | Not<br>specified              | 1250             | 250             | A26820        | No GLP<br>or       | Hill et al.,<br>1975                 |        |
| Bobwhite<br>quail        | dietary | 5 days           |                               | 805              | 161             |               | published          |                                      |        |
| Mallard<br>duck          | Dietary | 5 days           |                               | 1053             | 211             |               |                    |                                      |        |
| Pheasant                 | dietary | 5 days           |                               | 1275             | 255             |               |                    |                                      |        |
| Effectos on<br>Boproduct | Route   | Exposure         | Chemical                      | NO               | EC              | Doc. No       | Study              | Authors                              | Remark |
| Reproduct                |         |                  |                               | ppm              | mg/<br>kg/d     |               |                    |                                      |        |
| Japanese<br>quail        | dietary | 28 days          | Active<br>ingredient<br>97.1% | 50               | 5               | A18268        | No GLP<br>No publ. | Scholz &<br>Weigand<br>(1973)        |        |
| Bobwhite<br>quail        | dietary | >20<br>weeks     | Technical<br>97.2%            | 60               | 6               | A29572        | GLP                | Roberts<br>and<br>Phillipls,<br>1984 |        |
| Mallard<br>duck          | dietary | >20<br>weeks     | Technical<br>97.2%            | 30               | 4               | A 30678       | GLP                | Roberts<br>and<br>Phillips<br>(1985) |        |
| Mallard<br>duck          | dietary | >20<br>weeks     | Technical (96%)               | 30               | 4               | A 36310       | GLP                | Beavers et al. (1987)                |        |
| Bobwhite<br>quail        | dietary | >20<br>weeks     | Technical (96%)               | 60               | 6               | A 36311       | GLP                | Beavers et<br>al.<br>(1987b)         |        |

| <b>I abic 2.0.1-1.</b> Summary of toxicity data in Unus. |
|----------------------------------------------------------|
|----------------------------------------------------------|

The expected maximum and typical residue levels of endosulfan have been calculated using the method of Hoerger and Kenaga (1972). Considering the intended uses, leaves instead of grass have been considered as the most appropriated food for herbivorous vertebrates. TER acute calculations for both small and large birds have been estimated.

| Monograph | Volume I | Level 2 | 86 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

 Table 2.6.1-2: TER estimations for acute oral toxicity studies of endosulfan in citrus, pome fruit and vineyards crops for large birds.

| Feed    | Application<br>rate (kg<br>a.s/ha) | Typical<br>maximum<br>residue<br>(mg/kg) | Estimated<br>initial<br>residue<br>(mg/kg) | Maximum<br>daily intake<br>(mg/kg bw) | Acute<br>toxicity<br>(mg/kg) | TERa  |
|---------|------------------------------------|------------------------------------------|--------------------------------------------|---------------------------------------|------------------------------|-------|
| Leaves  | 1.05                               | 31 X R                                   | 32.55                                      | 3.255                                 | 28                           | 8.6   |
| Insects | 1.05                               | 29 X R                                   | 30.45                                      | 3.045                                 | 28                           | 9.2   |
| Fruits  | 1.05                               | 1.3 X R                                  | 1.365                                      | 0.1365                                | 28                           | 205.1 |

 Table 2.6.1-3: TER estimations for acute oral toxicity studies of endosulfan in citrus, pome fruit and vineyards crops for small birds.

| Feed    | Application<br>rate (kg<br>a.s/ha) | Typical<br>maximum<br>residue<br>(mg/kg) | Estimated<br>initial<br>residue<br>(mg/kg) | Maximum<br>daily intake<br>(mg/kg bw) | Acute<br>toxicity<br>(mg/kg) | TERa |
|---------|------------------------------------|------------------------------------------|--------------------------------------------|---------------------------------------|------------------------------|------|
| Leaves  | 1.05                               | 31 X R                                   | 32.55                                      | 9.765                                 | 28                           | 2.86 |
| Insects | 1.05                               | 29 X R                                   | 30.45                                      | 9.13                                  | 28                           | 3.06 |
| Fruits  | 1.05                               | 1.3 X R                                  | 1.365                                      | 0.4                                   | 28                           | 70   |

Table 2.6.1-4: TER estimations for acute oral toxicity studies of endosulfan in Tomatoes, potatoes and cucurbits

|         |                                    |                                          | crops for larg                             | e birds.                              |                              |       |
|---------|------------------------------------|------------------------------------------|--------------------------------------------|---------------------------------------|------------------------------|-------|
| Feed    | Application<br>rate (kg<br>a.s/ha) | Typical<br>maximum<br>residue<br>(mg/kg) | Estimated<br>initial<br>residue<br>(mg/kg) | Maximum<br>daily intake<br>(mg/kg bw) | Acute<br>toxicity<br>(mg/kg) | TERa  |
| Leaves  | 0.53                               | 31 XR                                    | 16.43                                      | 1.643                                 | 28                           | 17.04 |
| Insects | 0.53                               | 29 XR                                    | 15.37                                      | 1.537                                 | 28                           | 18.21 |
| Fruits  | 0.53                               | 1.3 XR                                   | 0.68                                       | 0.068                                 | 28                           | 411.7 |

 Table 2.6.1-5: TER estimations for acute oral toxicity studies of endosulfan in Tomatoes, potatoes and cucurbits

crops for small birds.

| Feed    | Application<br>rate (kg<br>a.s/ha) | Typical<br>maximum<br>residue<br>(mg/kg) | Estimated<br>initial<br>residue<br>(mg/kg) | Maximum<br>daily intake<br>(mg/kg bw) | Acute<br>toxicity<br>(mg/kg) | TERa |
|---------|------------------------------------|------------------------------------------|--------------------------------------------|---------------------------------------|------------------------------|------|
| Leaves  | 0.53                               | 31 XR                                    | 16.43                                      | 4.9                                   | 28                           | 5.71 |
| Insects | 0.53                               | 29 XR                                    | 15.37                                      | 4.61                                  | 28                           | 6.07 |
| Fruits  | 0.53                               | 1.3 XR                                   | 0.68                                       | 0.20                                  | 28                           | 140  |

| Monograph | Volume I | Level 2 | 87 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

| Feed    | Application<br>rate (kg<br>a.s/ha) | Typical<br>maximum<br>residue<br>(mg/kg) | Estimated<br>initial<br>residue<br>(mg/kg) | Maximum<br>daily intake<br>(mg/kg bw) | Acute<br>toxicity<br>(mg/kg) | TERa  |
|---------|------------------------------------|------------------------------------------|--------------------------------------------|---------------------------------------|------------------------------|-------|
| Leaves  | 0.8                                | 31 XR                                    | 24.8                                       | 2.48                                  | 28                           | 11.3  |
| Insects | 0.8                                | 29 XR                                    | 23.2                                       | 2.32                                  | 28                           | 12.06 |
| Fruits  | 0.8                                | 1.3 XR                                   | 1.04                                       | 0.104                                 | 28                           | 269.2 |

Table 2.6.1-6: TER estimations for acute oral toxicity studies of endosulfan in stone fruits crops for large birds.

Table 2.6.1-7: TER estimations for acute oral toxicity studies of endosulfan in stone fruits crops for small birds.

| Feed    | Application<br>rate (kg<br>a.s/ha) | Typical<br>maximum<br>residue<br>(mg/kg) | Estimated<br>initial<br>residue<br>(mg/kg) | Maximum<br>daily intake<br>(mg/kg bw) | Acute<br>toxicity<br>(mg/kg) | TERa  |
|---------|------------------------------------|------------------------------------------|--------------------------------------------|---------------------------------------|------------------------------|-------|
| Leaves  | 0.8                                | 31 XR                                    | 24.8                                       | 7.44                                  | 28                           | 3.7   |
| Insects | 0.8                                | 29 XR                                    | 23.2                                       | 6.96                                  | 28                           | 4.02  |
| Fruits  | 0.8                                | 1.3 XR                                   | 1.04                                       | 0.312                                 | 28                           | 89.74 |

Although there is a potential risk of endosulfan for large and small herbivorous and insectivorous birds in many crops, the rapporteur consider that the potential risk is higher for the insectivorous birds, taking into account the intended use of this substance.

The TER values for short-term dietary toxicity has been considered provisional due to the study presented by the applicant has to be validate at the ECCO level.

Table 2.6.1-8: TER estimations for acute dietary toxicity studies of endosulfan in citrus, pome fruit and

| Feed    | Application rate<br>(kg a.s/ha) | Estimated initial residue (mg/kg) | Acute dietary<br>toxicity (ppm) | TERst |
|---------|---------------------------------|-----------------------------------|---------------------------------|-------|
| Leaves  | 1.05                            | 32.55                             | 805                             | 24.73 |
| Insects | 1.05                            | 30.45                             | 805                             | 26.4  |
| Fruits  | 1.05                            | 1.365                             | 805                             | 589.7 |

vineyards crops.

Table 2.6.1-10: TER estimations for acute dietary toxicity studies of endosulfan in tomatoes, potatoes and

cucurbits crops.

| Feed    | Application rate<br>(kg a.s/ha) | Estimated initial residue (mg/kg) | Acute dietary<br>toxicity (ppm) | TERst  |
|---------|---------------------------------|-----------------------------------|---------------------------------|--------|
| Leaves  | 0.53                            | 16.43                             | 805                             | 49     |
| Insects | 0.53                            | 15.37                             | 805                             | 52.37  |
| Fruits  | 0.53                            | 0.68                              | 805                             | 1183.8 |

| Monograph | Volume I | Level 2 | 88 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

| <b>Fable 2.6.1-11</b> : TER estimations for acute dieta | ary toxicity studies | s of endosulfan in stone | fruits crops. |
|---------------------------------------------------------|----------------------|--------------------------|---------------|
|---------------------------------------------------------|----------------------|--------------------------|---------------|

| Feed    | Application rate | Estimated initial | Acute dietary  | TERst  |
|---------|------------------|-------------------|----------------|--------|
|         | (kg a.s/ha)      | residue (mg/kg)   | toxicity (ppm) |        |
| Leaves  | 0.8              | 24.8              | 805            | 32.45  |
| Insects | 0.8              | 23.2              | 805            | 34.7   |
| Fruits  | 0.8              | 1.04              | 805            | 774.03 |

The calculations of TER lt show a potential long-term risk for birds; this risk has to be addressed by higher tier assays.

vinevards.

Table 2.6.1-12: TER estimations for reproduction toxicity studies of endosulfan in Citrus, pome fruits and

| Feed    | Application rate | Estimated initial | Reproductive | TERIt |
|---------|------------------|-------------------|--------------|-------|
| Leaves  | 1.05             | 32.55             | 30           | 0.92  |
| Insects | 1.05             | 30.45             | 30           | 0.98  |
| Fruits  | 1.05             | 1.365             | 30           | 22    |

Table 2.6.1-13: TER estimations for reproduction toxicity studies of endosulfan in tomatoes, potatoes and

cucurbits.

| Feed    | Application rate<br>(kg a.s/ha) | Estimated initial residue (mg/kg) | <b>Reproductive</b><br>toxicity (ppm) | TERIt |
|---------|---------------------------------|-----------------------------------|---------------------------------------|-------|
| Leaves  | 0.53                            | 16.43                             | 30                                    | 1.82  |
| Insects | 0.53                            | 15.37                             | 30                                    | 1.95  |
| Fruits  | 0.53                            | 0.68                              | 30                                    | 44.11 |

Table 2.6.1-14: TER estimations for reproduction toxicity studies of endosulfan in stone fruits.

| Feed    | Application rate<br>(kg a.s/ha) | Estimated initial residue (mg/kg) | Reproductive<br>toxicity (ppm) | TERIt |
|---------|---------------------------------|-----------------------------------|--------------------------------|-------|
| Leaves  | 0.8                             | 24.8                              | 30                             | 1.2   |
| Insects | 0.8                             | 23.2                              | 30                             | 1.3   |
| Fruits  | 0.8                             | 1.04                              | 30                             | 28.8  |

The bioaccumulation potential of endosulfan has also been identified, and therefore the potential risk for fish eating birds must be estimated. Concentrations of endosulfan in water of about  $1\mu g/l$ , supposes a concentrations of about 5 ppm in fish. The TER estimated for this concentration (30% daily food consumption) are:

TERa = 18TER st = 161TER lt = 6

Therefore it is concluded that water concentrations of endosulfan large enough to produce acute fish mortalities can also constitute a potential risk for fish-eating birds. However, those concentrations which are not expected to be lethal for fish species do not represent a significant risk for ictivorous birds.

A daily food intake for small mammals of 25% their body weight have been used and the ETE values were estimated for leaves according to Hoeger and Kenaga. The values for leaves are similar to those expected in small insects, and therefore the assessment covers both herbivorous, insectivorous and omnivorous small mammals.

| Application rate                            | Estimation initial residue | Maximum daily intake | TER |
|---------------------------------------------|----------------------------|----------------------|-----|
| 1.05 (citrus, pome fruits<br>and vineyards) | 32.55                      | 8.1                  | 1.2 |
| 0.53 (tomatoes, potatoes and cucrbits)      | 16.43                      | 4.1                  | 2.4 |
| 0.83 (stone fruits)                         | 25.73                      | 6.43                 | 1.5 |

Table 2.6.1-15: TER acute estimation for terrestrial mammals

 Table 2.6.1-16: TER estimation for long-term toxicity of endosulfan for terrestrial mammals.

| Application rate                                 | Estimation initial residue | Maximum daily intake | TER  |
|--------------------------------------------------|----------------------------|----------------------|------|
| 1.05 (citrus, pome fruits and vineyards)         | 32.55                      | 8.1                  | 0.12 |
| 0.53 (tomatoes, potatoes 16.43<br>and cucurbits) |                            | 4.1                  | 0.24 |
| 0.83 (stone fruits)                              | 25.73                      | 6.43                 | 0.15 |

The TERa and TERIt are lower than the trigger values and therefore a potential risk for small mammals has been identified.

As already commented for the bird assessment the use of initial ETE values instead of time-weighted average for the long-term assessment is justified by the intended uses covered by the GAPs and the lack of information for a most in depth assessment of expected long-term exposures.

# 2.6.2 Effects on aquatic organism

# 2.6.2.1 Effects on fish

All the validated data are summarised in the following tables:

| Monograph |
|-----------|
|-----------|

90

Endosulfan December 1999

| Test<br>organisms                         | Study type                       | Chemical                    | Test<br>duration | LC <sub>50</sub> and<br>95% CI | Study<br>conditions | Doc,<br>Authors                                 | Remarks                              |
|-------------------------------------------|----------------------------------|-----------------------------|------------------|--------------------------------|---------------------|-------------------------------------------------|--------------------------------------|
| Bluegill<br>fish                          | Static                           | Technical<br>(96.6%)        | 96 h             | 33                             | Published           | Pickering<br>&<br>Henderson,<br>1966<br>A14124  | Study with<br>hard and<br>soft water |
| Guppy fish                                | Static                           | Technical<br>(96.6%)        | 96 h             | 3.7                            | Published           | Pickering<br>&<br>Henderson,<br>1966<br>A14124  | Study with<br>hard and<br>soft water |
| Rainbow<br>trout                          | Static                           | Thiodan ®                   | 96 h             | 1.5                            | Published           | Macek et<br>al, 1969 A<br>23688                 | At 12° C                             |
| Rainbow<br>trout                          | Static                           | Technical (96.4%)           | 96 h             | 0.3                            | Published           | Schoettger<br>(1970)<br>A14253                  | At 10 ° C                            |
| White<br>sucker                           | Static                           | Technical<br>(96.4%)        | 96 h             | 3.0                            | Published           | Schoettger<br>(1970)<br>A14253                  | At 19 °C                             |
| Fathead<br>minnow                         | Intermitent<br>flow-<br>bioassay | Endosulfan<br>(99%)         | 7 días           | 0.86                           | Published           | Macek et al (1976)                              |                                      |
| Golden<br>orfe                            | Static                           | Active<br>substance         | 96 h             | 2                              | No GLP.<br>No publ. | Knauf<br>(1977) A<br>167322                     |                                      |
| Common<br>carp                            | Static                           | Active<br>substance         | 96 h             | 6.9                            | No GLP.<br>No publ. | Knauf<br>(1978) A<br>31512                      |                                      |
| Mosquito<br>fish                          | Static                           | Technical grade             | 96 h             | 8                              | Published           | Joshi&<br>rege (1980)<br>A 29254                |                                      |
| Indian fish<br>species                    | Flow<br>through                  | Active<br>ingredient        | 96 h             | 1.2<br>(1.1-1.3)               | Published           | Mohanaran<br>ga &<br>Murty<br>(1980) A<br>29255 |                                      |
| Labeo<br>rohita<br>Indian fish<br>species | Flow<br>through                  | Technical<br>grade<br>(96%) | 96 h             | 1.1                            | Published           | Rao et al<br>(1980) A<br>22299                  |                                      |
| Channa<br>punctatus                       | Flow<br>through                  | Technical<br>grade<br>(96%) | 96 h             | 4.8                            | Published           | Devi et al<br>(1981) A<br>22297                 |                                      |
| Walking<br>catfish                        | Static                           | Technical<br>grade<br>(90%) | 96 h             | 14<br>(14.5-13.4)              | Published           | Gopal et al<br>(1981) A<br>23187                |                                      |
| Mystus<br>vittatus                        | Dynamic                          | Not<br>specified            | 96 h             | 1.9<br>(1.8-2.1)               | Published           | Rao<br>&Murty<br>1982 A<br>26105                |                                      |
| M cavasius                                | Dynamic                          | Not<br>specified            | 96 h             | 2.2<br>(2-2.4)                 | Published           | Rao<br>&Murty<br>1982 A<br>26105                |                                      |
| Heteropneu<br>stes fossilis               | Dynamic                          | Not<br>specified            | 96 h             | 1.1<br>(0.93-1.30)             | Published           | Rao<br>&Murty<br>1982 A<br>26105                |                                      |

| Monograph | Volume I | Level 2 | 91 | Endosulfan |
|-----------|----------|---------|----|------------|
|-----------|----------|---------|----|------------|

December 1999

| Test<br>organisms | Study type  | Chemical           | Test<br>duration | LC <sub>50</sub> and 95% CI | Study<br>conditions | Doc,<br>Authors              | Remarks   |
|-------------------|-------------|--------------------|------------------|-----------------------------|---------------------|------------------------------|-----------|
| 0                 |             |                    |                  | (µg/l)                      |                     |                              |           |
| Heteropneu        | Static      | Not                | 96 h             | 9.7                         | Published           | Singh &                      |           |
| stes fossilis     |             | specified          |                  |                             |                     | Narein,                      |           |
|                   |             |                    |                  |                             |                     | 1982 A<br>23196              |           |
| Heteropneu        | Static      | No                 | 96 h             | 2                           | Published           | Singh &                      |           |
| stes fossilis     |             | especifican        |                  | (1.8-2)                     |                     | Srivastava                   |           |
|                   |             | que                |                  |                             |                     | (1981) A                     |           |
| Detaile           | Circle .    | endosulfan         | 061              | 0.02                        | N. CLD              | 32901                        | A ( 109C) |
| trout             | Static      | Active             | 96 n             | 0.93                        | NO GLP<br>No        | Fischer $(1983) \Delta$      | At 12°C   |
| tiout             |             | (95.9%)            |                  | (0.01 1.00)                 | published           | 26006                        |           |
| Rainbow           | Static      | Technical          | 96 h             | 1.6                         | Published           | Nebeker et                   |           |
| trout             |             | grade              |                  |                             |                     | al, 1983 A                   |           |
| Dainham           | Demonia     | Technical          | 061              | 0.2                         | Dahlishad           | 27380<br>Nahabar at          |           |
| trout             | Dynamic     | grade              | 90 n             | 0.5                         | Published           | Nedeker et al. 1983 $\Delta$ |           |
| tiout             |             | Since              |                  |                             |                     | 27380                        |           |
| Fathead           | Static      | Technical          | 96 h             | 0.8                         | Published           | Nebeker et                   |           |
| minnow            |             | grade              |                  |                             |                     | al, 1983 A                   |           |
| Eath and          | Demonia     | Technical          | 061              | 1                           | Dahlishad           | 27380<br>Nahalaarat          |           |
| Fathead           | Dynamic     | rechnical<br>grade | 96 n             | 1                           | Published           | Nebeker et                   |           |
| iiiiiiio w        |             | grude              |                  |                             |                     | 27380                        |           |
| Punctius          | Static      | Technical          | 96 h             | 160                         | Published           | Singh &                      |           |
| ticto             |             | grade              |                  |                             |                     | Sahai                        |           |
|                   |             | (96.6%)            |                  |                             |                     | (1984) A                     |           |
| Harlequin         | Static      | Technical          | 96 h             | 160                         | Published           | Singh &                      |           |
| fish              | State       | grade              | <i>y</i> 0 H     | 100                         | 1 donone d          | Sahai                        |           |
|                   |             | (96.6%)            |                  |                             |                     | (1984) A                     |           |
| CI                | <b>a</b>    | <b>T</b> 1 · 1     | 0.61             | <b>5 7</b> 0                | D 11' 1 1           | 36683                        |           |
| Channa            | Semi-static | rechnical          | 96 h             | 5.78                        | Published           | Haider &                     |           |
| punctatus         |             | graue              |                  | (4.49-7.44)                 |                     | (1986)                       |           |
|                   |             |                    |                  |                             |                     | A36292                       |           |
| Saint Peter       | Semi-static | Not                | 96 h             | 2.05-2.79                   | Published           | Herzberg,                    |           |
| fish              |             | specified          |                  |                             |                     | 1986 A                       |           |
| Freshwater        | Static      | Endosulfan         | 96 h             | 20                          | Published           | 36295<br>Ferrando &          | At 29 °C  |
| eel               | Static      | (96%)              | 70 H             | (17-23)                     | i ublished          | Moliner                      | At 27 C   |
|                   |             | × ,                |                  | · · /                       |                     | (1989) A                     |           |
|                   |             |                    |                  |                             |                     | 42966                        |           |
| Catla Catla       | Dynamic     | Technical          | 96 h             | 1.84 (1.78-                 | Published           | Rao (1989)                   |           |
|                   |             | (96%)              |                  | 1.91)                       |                     | A 45108                      |           |
| Freshwater        | static      | Technical          | 96 h             | 41                          | Published           | Ferrando et                  |           |
| eel               |             | grade              |                  | (33-50)                     |                     | al, (1991)                   |           |
| G 11              |             | (96%)              | 0.41             | 0.0                         | <b>D</b> 1 1 1 1    | A 47633                      |           |
| Golden            | Semi-static | Technical          | 96 h             | 0.3                         | Published           | Sunderam $(1002)$ A          |           |
| percir            |             | (96.2%)            |                  |                             |                     | (1992) A<br>49782            |           |
| Bony              | Semi-static | Technical          | 96 h             | 0.2                         | Published           | Sunderam                     |           |
| bream             |             | grade              |                  |                             |                     | (1992) A                     |           |
| 0.1               |             | (96.2%)            | <b></b>          |                             | D 1 11 1 1          | 49782                        |           |
| Silver            | Semi-static | Technical          | 96 h             | 2.3                         | Published           | Sunderam $(1002)$ A          |           |
| perch             |             | (96.2%)            |                  |                             |                     | (1992) A<br>49782            |           |
| Common            | Semi-static | Technical          | 96 h             | 0.1                         | Published           | Sunderam                     |           |
| carp              |             | grade              |                  |                             |                     | (1992) A                     |           |

| Monograph | Volume I | Level 2 | 92 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

| Test<br>organisms                   | Study type       | Chemical                      | Test<br>duration | LC <sub>50</sub> and<br>95% CI<br>(µg/l) | Study<br>conditions | Doc,<br>Authors                          | Remarks                                |
|-------------------------------------|------------------|-------------------------------|------------------|------------------------------------------|---------------------|------------------------------------------|----------------------------------------|
|                                     |                  | (96.2%)                       |                  |                                          |                     | 49782                                    |                                        |
| Mosquito<br>fish                    | Static           | Technical<br>grade<br>(96.2%) | 96 h             | 2.3                                      | Published           | Sunderam<br>(1992) A<br>49782            |                                        |
| Rainbow<br>trout                    | Static           | Technical<br>grade<br>(96.2%) | 96 h             | 0.7                                      | Published           | Sunderam<br>(1992) A<br>49782            |                                        |
| Melanotae<br>nia<br>duboulayi       | Flow-<br>through | Technical<br>grade<br>(96.2%) | 96 h             | 0.5                                      | Published           | Sunderam<br>(1992) A<br>49782            | At 25 ° C                              |
| Harleqquin<br>fish                  | Flow-<br>through | Technical<br>grade<br>(96.2%) | 96 h             | 0.2                                      | Published           | Sunderam<br>(1992) A<br>49782            | At 25 ° C                              |
| Zebra fish                          | Semistatic       | Technical<br>grade<br>(97%)   | 24 h             | 1.6                                      | Published           | Jonsson &<br>Toledo<br>(1993) A<br>51153 |                                        |
| Yellow<br>tetra                     | Semistatic       | Technical<br>grade<br>(97%)   | 24 h             | 2.6                                      | Published           | Jonsson &<br>Toledo<br>(1993) A<br>51153 |                                        |
| Lagodon<br>rhomboide<br>s (pinfish) | Flow-<br>through | Technical<br>endosulfan       | 96 h             | 0.3                                      | Published           | Schimmel<br>et al.<br>(1977) A<br>22871  | Filtered<br>marine<br>water at<br>23°C |
| Striped<br>bass                     | Flow-<br>trhough | Technical<br>grade<br>(96%)   | 96 h             | 0.23                                     | Published           | Fujimura et<br>al. 1991 A<br>47515       |                                        |
| Leiostomus<br>xanthurus<br>(spot)   | Flow-<br>through | Technical<br>endosulfan       | 96 h             | 0.09                                     | Published           | Schimmel<br>et al.<br>(1977) A<br>22871  | Filtered<br>marine<br>water at<br>23°C |
| Mugil<br>cephalus                   | Flow-<br>through | Technical<br>endosulfan       | 96 h             | 0.38                                     | Published           | Schimmel<br>et al.<br>(1977) A<br>22871  | Filtered<br>marine<br>water at<br>23°C |

The studies suggest that endosulfan is highly toxic to fish. The rapporteur conclusion is an acute toxicity of endosulfan to fish in the range of 0.1-10  $\mu$ g/l, with a value of about 1 $\mu$ g/l. Due to the large amount of information, a sensitivity distribution curve can be used. This distribution has been done using all the data excepting those obtained in static test and those data for species showing large differences between studies. Probabilistic curves are included.

**Figure 2.6.2.1-1**: Frequency distribution of LC<sub>50</sub> values for acute toxicity in fish and log-normal distribution estimated by the rapporteur.



LOG LC50

| Monograph | Volume I | Level 2 | 94 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

Figure 2.6.2.1-2: Frequency distribution of  $LC_{50}$  values for acute toxicity in fish and log-normal distribution estimated by the rapporteur excluding the values for carp and harlequin fish.



Technical endosulfan is a mixture of two isomers. The acute 96-h toxicity of these isomers has been studied on fish. The results are summarised in the following table.

| Test organism   | 96-h LC <sub>50</sub><br>(μg/l)<br>α-Endosulfan | 96-h LC <sub>50</sub><br>(μg/l)<br>β-Endosulfan | 96-h LC <sub>50</sub><br>(μg/l)<br>Technical<br>endosulfan | Doc.<br>No.: | Author                |
|-----------------|-------------------------------------------------|-------------------------------------------------|------------------------------------------------------------|--------------|-----------------------|
| Channa punctata | 0.16                                            | 6.6                                             | 4.8                                                        | A22297       | Devi et al.<br>(1981) |
| Catla catla     | 0.36                                            | 7.67                                            | 1.84                                                       | A43108       | Rao (1989)            |
| Labeo rohita    | 0.33                                            | 7.1                                             | 1.1                                                        | A22299       | Rao et al. (1980)     |

Table 2.6.2.1-2: Acute toxicity of endosulfan isomers to fish.

It seems that  $\alpha$ -endosulfan is more toxic than  $\beta$ -endosulfan, but the results are not always congruent. Taking into account that the possible more toxic isomer is the one that shows a faster dissipation in the environment, the use of toxicity and exposure data for the technical product is considered a realistic worst case. Additional information could be considered.

The acute toxicity of the formulated product Thiodan to fish has been summarised in the following table.

| Monograph | Volume I | Level 2 | 95 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

| Test         | Study type  | Chemical        | Test         | LC <sub>50</sub> (µg/l) | Study      | Authors,              | Remarks             |
|--------------|-------------|-----------------|--------------|-------------------------|------------|-----------------------|---------------------|
| organisms    |             |                 | duration     |                         | conditions | Doc. Nº               |                     |
| Puntius      | Static      | Thiodan         | 96 h         | 1.2                     | Published  | Arora et al.          |                     |
| sophore      |             | 55%             |              |                         |            | 25870                 |                     |
| Mystus       | Static      | Thiodan         | 96 h         | 0.24                    | Published  | Gopalakrish           |                     |
| vittatus     |             | 35%             |              |                         |            | na Reddy &            |                     |
|              |             |                 |              |                         |            | Gomathy               |                     |
|              |             |                 |              |                         |            | (1977) A              |                     |
| Golden orfe  | Static      | Thiodan         | 96 h         | 7                       | No GLP or  | Knauf                 |                     |
|              | State       | 35%             | <i>y</i> 0 H | ,                       | Published  | (1977b) A             |                     |
|              |             |                 |              |                         |            | 16730                 |                     |
| Rainbow      | Static      | Thiodan         | 96 h         | 4.7                     | No GLP or  | Knauf                 |                     |
| trout        |             | (not            |              |                         | published  | (1977 c) A            |                     |
| Cyprinus     | Static      | Thiodan         | 96 h         | 11                      | No GLP or  | Knauf                 |                     |
| carpio       | State       | 35%             | <i>y</i> 0 H |                         | published  | (1977d) A             |                     |
| -            |             |                 |              |                         | -          | 14970                 |                     |
| Channa       | Static      | Thiodan         | 96 h         | 10.6                    | Published  | Dalela et al.         |                     |
| gachua       |             | 35%             |              |                         |            | (1978) A<br>25861     |                     |
| Guppy fish   | Static      | Thiodan         | 96 h         | 5.2                     | No GLP or  | Knauf                 |                     |
|              |             | (not            |              |                         | published  | (1978) A              |                     |
|              |             | specified)      |              |                         |            | 18466                 |                     |
| Mosquito     | Static      | Thiodan         | 96 h         | 3.2                     | Published  | Joshi &               | Data                |
| IISN         |             | 35%             |              |                         |            | (1980) A              | active              |
|              |             |                 |              |                         |            | 29254                 | ingredient          |
| Labeo        | Continuous  | Thiodan         | 96 h         | 1                       | Published  | Rao et al.            | Data                |
| rohita       | flow system | 35%             |              |                         |            | (1980) A              | referred to         |
|              |             |                 |              |                         |            | 22299                 | active              |
| Channa       | Continuous  | Thiodan         | 96 h         | 2.5                     | Published  | Devi et al.           | Data                |
| puctata      | flow        | 35%             |              |                         |            | (1981) A              | referred to         |
|              |             |                 |              |                         |            | 22297                 | active              |
| 24           | G. J.       | <b>701</b> • 4  | 061          | 0.77                    | D 11' 1 1  | <b>X</b> 7 ( 1        | ingredient          |
| Mystus       | Static      | 1 hiotox<br>35% | 96 n         | 0.67                    | Published  | (1981)                | Data<br>referred to |
| vittatus     |             | 5570            |              |                         |            | A29130                | active              |
|              |             |                 |              |                         |            |                       | ingredient          |
| Ophiocepha   | Static      | Thiotox         | 96 h         | 22                      | Published  | Verma et al.          | Data                |
| lus          |             | 35%             |              |                         |            | (1981)                | referred to         |
| punctatus    |             |                 |              |                         |            | A29130                | ingredient          |
| Barbus       | Static      | Endosulfan      | 96 h         | 4.3                     | Published  | Manoharan             | 8                   |
| stigma       |             | (not            |              |                         |            | & Subbiah             |                     |
|              |             | specified)      |              |                         |            | (1982) A              |                     |
| Saccobranc   | Static      | Thiotox         | 96 h         | 6.6                     | Published  | 27749<br>Verma et al  | Data                |
| hus Fossilis | Suite       | 35%             | 70 H         | 0.0                     | i uonsnou  | (1982) A              | referred to         |
|              |             |                 |              |                         |            | 25048                 | active              |
|              | a:          |                 | 0            | 10.0                    | D 1 11 1 1 | 17 -                  | ingredient          |
| Saccobranc   | Static      | Thiodan<br>35%  | 96 h         | 10.8                    | Published  | Verma et al. $(1982)$ | Data<br>referred to |
| nus possilis |             | 5570            |              |                         |            | (1702) A<br>25048     | active              |
|              |             |                 |              |                         |            |                       | ingredient          |
| Rainbow      | Static      | Endosulfan      | 96 h         | 2.1                     | GLP        | Fisher                |                     |
| trout        |             | (352 g/l)       |              |                         |            | (1984b) A             |                     |

| Monograph | Volume I | Level 2 | 96 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

| Test         | Study type | Chemical   | Test     | LC <sub>50</sub> (µg/l) | Study      | Authors,     | Remarks     |
|--------------|------------|------------|----------|-------------------------|------------|--------------|-------------|
| organisms    |            |            | duration |                         | conditions | Doc. Nº      |             |
|              |            |            |          |                         |            | 30032        |             |
| Bluegill     | Static     | Endosulfan | 96 h     | Between 10              | GLP        | Fisher       |             |
| sunfish      |            | (352 g/l)  |          | and 5.6                 |            | (1984c) A    |             |
|              |            |            |          |                         |            | 29508        |             |
| Lebistes     | Renewal    | Endosulfan | 96 h     | 2.7                     | Published  | Gupta et al. |             |
| reticulatus  | daily      | 35EC       |          |                         |            | (1984) A     |             |
|              |            |            |          |                         |            | 32237        |             |
| Channa       | Renewal    | Thiodan    | 96 h     | 3.07                    | Published  | Haider &     |             |
| punctatus    | daily      | 35%        |          |                         |            | Inbaraj      |             |
|              |            |            |          |                         |            | (1986) A     |             |
|              |            |            |          |                         |            | 36292        |             |
| Barilius     | Static     | Technical  | 96 h     | 13.5                    | Published  | Deoray &     | pH = 6.5    |
| bendelisis   |            | grade      |          | 15.6                    |            | Wagh         | pH = 7.5    |
|              |            | Thiodon    |          | 16.6                    |            | (1987)       | pH = 9      |
|              |            | (35EC)     |          |                         |            | A43067       |             |
| Fundulus     | Static     | Endosulfan | 96 h     | 1.15                    | Published  | Trim         | Data        |
| heteroclitus |            | (30%)      |          |                         |            | (1987) A     | referred to |
|              |            |            |          |                         |            | 36296        | active      |
|              |            |            |          |                         |            |              | ingredient  |
| Mosquito     | Static     | Thiodan ®  | 96 h     | 1.3                     | Published  | Naqvi &      |             |
| fish         |            | (50%)      |          |                         |            | Hawkins      |             |
|              |            |            |          |                         |            | (1988)       |             |
|              |            |            |          |                         |            | A43065       |             |
| Catla catla  | Flow       | Formulatio | 96 h     | 1.05                    | Published  | Rao (1989)   | Data        |
|              | trough     | n 35% EC   |          |                         |            | A43108       | referred to |
|              |            |            |          |                         |            |              | active      |
|              |            |            |          |                         |            |              | ingredient  |
| Puntius      | Static     | Endosulfan | 48 h     | 21.36                   | Published  | Gill et al.  |             |
| conchonius   |            | 35% EC     |          |                         |            | (1991)       |             |
|              |            |            |          |                         |            | A47588       |             |

In some studies the toxicity of the formulated product has been identified to be higher than that observed for the active substance; when a comparison between studies with similar conditions was done, the results suggest that the toxicity of the formulate is equivalent to that expected according to the proportion of technical endosulfan.

The endosulfan metabolites should be classified as highly toxic or toxic according to the EU regulation and must be included in the risk assessment if relevant. Nevertheless, more information about the toxic effects of these metabolites has to be presented.

The following tables consider the estimated risk of endosulfan for fish assuming worst case conditions.

| Monograph | Volume I | Level 2 | 97 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

| Crop         | Application | Nº | SI   | Distance | Drift | Initial PECsw | TER   |
|--------------|-------------|----|------|----------|-------|---------------|-------|
|              | rate        |    | Days | m        | %     | μg as/L       |       |
| Citrus       | 1.05        | 2  | 14   | 3        | 15.5  | 54.25         | 0.002 |
|              |             |    |      | 10       | 4.5   | 15.75         | 0.008 |
|              |             |    |      | 50       | 0.2   | 0.70          | 0.18  |
| Vineyards    | 1.05        | 2  | 14   | 3        | 7.5   | 26.25         | 0.005 |
|              |             |    |      | 10       | 1.5   | 5.25          | 0.025 |
|              |             |    |      | 50       | 0.2   | 0.70          | 0.18  |
| Arable crops | 0.84        | 3  | 14   | 1        | 4.0   | 11.20         | 0.01  |
|              |             |    |      | 10       | 0.4   | 1.12          | 0.11  |
|              |             |    |      | 30       | 0.1   | 0.28          | 0.46  |
| Arable crops | 0.53        | 3  | 7    | 1        | 4.0   | 7.07          | 0.018 |
|              |             |    |      | 10       | 0.4   | 0.71          | 0.18  |
|              |             |    |      | 30       | 0.1   | 0.18          | 0.72  |

 Table 2.6.2.1-4: Acute TER estimations for fish

The results clearly indicate a potential risk for fish even assuming large buffer zones. It is clear that the uncertainty in this assessment is obviously lower than that expected in other cases where the toxicity data are limited to two species with no information on the sensitivity curve distribution. Considering that in this particular case the differences in species sensitivities are already covered by the use of the 95<sup>th</sup> percentile of a sensitivity distribution curve, the rapporteur considers that in a higher tier assessment, a TER value of 10 on this percentile can be considered as acceptable for the protection of fish species. However, this value is not reached even assuming large buffer zones, and therefore a potential risk for fish is expected. In addition, the estimations for the risk associated to run-off using a generic scenario also provided TER values lower than 1, and therefore suggest a potential risk.

The long-term chronic TER for the initial assessment are included in the following table.

| Test organism         | Study type       | Test   |    | LC <sub>50</sub> | NOEC | Doc.   | Author               |
|-----------------------|------------------|--------|----|------------------|------|--------|----------------------|
|                       |                  | durati | on | μg/l             | μg/l | No.:   |                      |
| Cyprinodon variegatus | early life stage | 28     | d  | n.r.             | 0.40 | A47514 | Hansen &             |
|                       | test             |        |    |                  |      |        | Cripe (1991)         |
| Oncorhynchus mykiss   | juvenile growth  | 21     | d  | 0.28             | 0.05 | A46835 | Knacker et al.       |
|                       | test             |        |    |                  |      |        | (1991)               |
| Pimephales promelas   | life cycle test  | app. 1 | У  | 0.86             | 0.2  | A27951 | Maceck et al. (1976) |

 Table 2.6.2.1-5:
 Chronic toxicity of endosulfan to fish

n.r. not reported

According to chronic toxicity on fish, the rapporteur considers that although the acute toxicity of endosulfan for fish is well document an opposite situation is observed regarding the chronic toxicity because the use of simplified chronic tests for endosulfan seems to be inappropriate and the effects on reproduction must be addressed in life-cycle studies.

Long-term chronic TER estimations for fish are presented in the next table.

| Monograph | Volume I | Level 2 | 98 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

| Crop         | Application | Nº | SI   | Distance | Drift | <b>Initial PECsw</b> | TER   |
|--------------|-------------|----|------|----------|-------|----------------------|-------|
|              | rate        |    | Days | m        | %     | μg as/L              |       |
| Citrus       | 1.05        | 2  | 14   | 3        | 15.5  | 54.25                | 0.001 |
|              |             |    |      | 10       | 4.5   | 15.75                | 0.003 |
|              |             |    |      | 50       | 0.2   | 0.70                 | 0.07  |
| Vineyards    | 1.05        | 2  | 14   | 3        | 7.5   | 26.25                | 0.002 |
|              |             |    |      | 10       | 1.5   | 5.25                 | 0.01  |
|              |             |    |      | 50       | 0.2   | 0.70                 | 0.07  |
| Arable crops | 0.84        | 3  | 14   | 1        | 4.0   | 11.20                | 0.004 |
|              |             |    |      | 10       | 0.4   | 1.12                 | 0.04  |
|              |             |    |      | 30       | 0.1   | 0.28                 | 0.18  |
| Arable crops | 0.53        | 3  | 7    | 1        | 4.0   | 7.07                 | 0.007 |
|              |             |    |      | 10       | 0.4   | 0.71                 | 0.07  |
|              |             |    |      | 30       | 0.1   | 0.18                 | 0.28  |

All TER values are lower than the trigger value even using large buffer-zones. In addition, these values don't represent the worst case conditions due to the NOEC used correspond to a NOEC for growth. These results suggest a potential long term risk of endosulfan to fish even using an endpoint likely non sensitive. The estimations for the risk associated to run-off using a generic scenario also provide TER values lower than 1, and therefore suggest a potential risk.

From the higher tier studies submitted by the notifier, the rapporteur considers that the study confirms a high risk of endosulfan for fish species if the molecule is able to reach aquatic ecosystems even at concentrations lower than  $1\mu g/l$ . The development of crop-specific scenarios for the refinement of this assessment is considered the best alternative. Taking into account that the isomer alfa seems to be the most toxic but at the same time the most rapidly degraded in both soil and water, an additional level of refinement could be achieved by an independent assessment of the environmental fate and toxicity of each isomer an the metabolites, particularly endosulfan sulphate, which obviously should include the assessment of synergistic effects among the isomers and the metabolite.

From the available information, a high potential for bioaccumulation in fish tissues but a rapid clearance can be considered. The values suggested by the rapporteur are a BCF in fish of 5000 and a half life of 2 days.

| Monograph | Volume I | Level 2 | 99 | Endosulfan | December 1999 |
|-----------|----------|---------|----|------------|---------------|
|-----------|----------|---------|----|------------|---------------|

# 2.6.2.2 Effects on aquatic invertebrates

Data of acute toxicity of endosulfan technical on Daphnia magna are summarised in the next table.

| Test         | Study type | Chemical    | Test         | $LC_{50}$   | Study       | Authors<br>Doc N <sup>o</sup> | Remarks |
|--------------|------------|-------------|--------------|-------------|-------------|-------------------------------|---------|
| Dophnio      | Static     | Tachnical   | 18 h         | $(\mu g/I)$ | Published   | Schoottgor                    |         |
| magna        | Static     | (96.4%)     | 40 11        | 02          | rublished   | (1970)                        |         |
| magna        |            | ()0.470)    |              |             |             | A14253                        |         |
| D magna      | Static     | Technical   | 48 h         | 271         | Published   | Nebeker et                    |         |
| 2            | State      | grade       | 10 11        |             | 1 401151104 | al. 1983                      |         |
| D.magna      | Static     | Technical   | 48 h         | 343         | Published   | Nebeker et                    |         |
| U            |            | grade       |              |             |             | al. 1983                      |         |
| Daphnia      | Static     | Endosulfan  | 48 h         | 166         | Published   | Macek et al                   |         |
| magna        |            | (99%)       |              |             | (parece un  | (1976)                        |         |
|              |            |             |              |             | informe)    |                               |         |
| Daphnia      | Static     | No          | 48 h         | 158-740     | Published   | Nebeker                       |         |
| magna        |            | specified   |              |             |             | 1982 A                        |         |
| 5            | G          |             | 401          |             | N. CLD      | 25040                         |         |
| D.magna      | Static     | Active      | 48h          | 75          | No GLP or   | Knauf                         |         |
|              |            | ingredient  |              |             | published   | 19770 A<br>16733              |         |
| D carinata   | Static     | Technical   | 18 h         | 180         | Published   | Santharam                     |         |
| D. Carmata   | Static     | grade       | -011         | 100         | 1 donished  | et al 1976                    |         |
|              |            | Brude       |              |             |             | A25919                        |         |
|              | Static     | Formulado   | 24 h         | 1000        | Published   | Oeser et al.                  |         |
| Cyclops      |            | (35%        |              | LC100       |             | 1971 A                        |         |
| sirenus      |            | emulsionab  |              |             |             | 14255                         |         |
|              |            | le)         |              |             |             |                               |         |
| Brachionus   | Static     | No          | 24 h         | 5600        | Published   | Serrano et                    |         |
| plicatilis   |            | especifican |              | (5800-      |             | al. 1986 A                    |         |
| D 1'         | G          | 1 10        | 241          | 5400)       | D 1 1 1 1   | 53745                         |         |
| Brachionus   | Static     | endosulfan  | 24 h         | 5150        | Published   | Fdez                          |         |
| carycillorus |            | 96%         |              |             |             | casiderrey                    |         |
|              |            |             |              |             |             | A 47492                       |         |
| Enallagma    | Static     | Technical   | 96 h         | 17.5        | Published   | Gopal et al.                  |         |
| spec.        | State      | grade       | <i>,</i> 0 H | 1710        | 1 401151104 | 1981                          |         |
| 1            |            | (90%)       |              |             |             | A23187                        |         |
| Gammarus     | Static     | Not         | 96 h         | 5.8         | Published   | Sanders                       |         |
| lacustris    |            | specified   |              |             |             | (1969)                        |         |
|              |            |             |              |             |             | A 26101                       |         |
| Gammarus     | Static     | Not         | 96 h         | 6 (4-8)     | Published   | Sanders                       |         |
| faciatus     |            | specified   |              |             |             | (1972) A                      |         |
| G            | C          | NT /        | 24.1         | ~           | D 11:1 1    | 28837                         |         |
| Gammarus     | Static     | Not         | 24 h         | 5<br>L C100 | Published   | Ludemann                      |         |
| roesem       |            | specified   |              | LC100       |             | (1960) A                      |         |
|              |            |             |              |             |             | 14242                         |         |
| Caridina     | Static     | Not         | 96 h         | 5.1-14.1    | Published   | Yadav et al                   |         |
| weberi       | State      | specified   | <i>,</i> 0 H | 011 1 111   | 1 401151104 | (1991)                        |         |
|              |            | 1           |              |             |             | A47589                        |         |
| Hydrachna    | Static     | Technical   | 48 h         | 2.8         | Published   | Nair (1981)                   |         |
| trilobata    |            | grade       |              | (2.3-3.4)   |             | A26111                        |         |
|              | i          | 1           |              | 1           | 1           | 1                             |         |
| Ischnura sp. | Static     | Technical   | 96 h         | 71.8        | Published   | Schoettger                    |         |
|              |            | grade       |              |             |             | (1970) A                      |         |

 Table 2.6.2.2-1: Acute toxicity to aquatic invertebrates.

| Monograph | Volume I | Level 2 | 100 | Endosulfan | December 1999 |
|-----------|----------|---------|-----|------------|---------------|
|-----------|----------|---------|-----|------------|---------------|

| Test<br>organisms          | Study type | Chemical                    | Test<br>duration | LC <sub>50</sub><br>(µg/l) | Study condition | Authors<br>Doc. Nº                              | Remarks                                            |
|----------------------------|------------|-----------------------------|------------------|----------------------------|-----------------|-------------------------------------------------|----------------------------------------------------|
|                            |            | (96.4%)                     |                  |                            |                 | 14253                                           |                                                    |
| Moina<br>micrura           | Static     | Technical<br>grade<br>(90%) | 24 h             | 16.2 (17.1-<br>15.3)       | Published       | Krishnan&<br>Chockaling<br>am (1989)<br>A 43063 |                                                    |
| Oziotelphusa<br>senex      | Static     | Technical<br>grade<br>(99%) | 96 h             | 570-1490                   | Published       | Naidu et al.<br>(1987) A<br>43105               |                                                    |
| Oziotelphusa<br>senex      | Static     | Technical<br>grade<br>(95%) | 96 h             | 12200-<br>28600            | Published       | Reddy et al. (1992)                             | Data at 38°<br>and 12 <sup>a</sup><br>respectively |
| Pteronarcys<br>californica | Static     | Not<br>specified            | 96 h             | 2.30 (1.6-<br>3.3)         | Published       | Sanders<br>&Cope<br>(1968) A<br>25918           |                                                    |

With these data The rapporteur proposes the use of an  $LC_{50}$  of 0.04 µg/l, as the acute toxicity endpoint for the most sensitive aquatic invertebrate; and a 48 h.  $EC_{50}$  of 150 µg/l for *Daphnia magna* which corresponds to the 90<sup>th</sup> percentile for the toxicity data on this species. The use of the pink shrimp data is considered appropriate because of the socio-economic importance of this species in areas near to crops included in the intended uses of endosulfan.

According to the formulated product, the acute toxicity on aquatic invertebrates has been summarised in the following table.

| Test        | Study      | Chemical   | Test     | LC50   | Study      | Authors      | Remarks   |
|-------------|------------|------------|----------|--------|------------|--------------|-----------|
| organisms   | type       | 0          | duration | (ug/l) | conditions | Docs. Nº     |           |
| Chironomus  | Static     | Thiodan    | 24 hours | 53     | Published  | Ludermann    |           |
| spec.       |            | (not       |          |        |            | &            |           |
|             |            | specified) |          |        |            | Neumann      |           |
|             |            |            |          |        |            | (1960)       |           |
|             |            |            |          |        |            | A18837       |           |
| Daphnia     | Static     | Endosulfan | 48 hours | 470    | Nor GLP or | Knauf        |           |
| magna       |            | (35EC)     |          |        | published  | (1976)       |           |
|             |            |            |          |        |            | A16729       |           |
| Aedes       | Static     | Endosulfan | 96 hours | 54     | Nor GLP or | Knauf        |           |
| Aegypti     |            | (35EC)     |          |        | published  | (1977)       |           |
|             |            |            |          |        |            | A16736       |           |
| Daphnia     | Static     | Endosulfan | 48 hours | 4      | GLP        | Fischer      |           |
| magna       |            | (35EC)     |          |        |            | (1984)       |           |
|             |            |            |          |        |            | A29798       |           |
| Lamellidens | Semistatic | Endosulfan | 96 hours | 6      | Published  | Mane &       |           |
| marginalis  |            | (35EC)     |          |        |            | Muley        |           |
|             |            |            |          |        |            | (1984)       |           |
|             |            |            |          |        |            | A31349       |           |
| Lamellidens | Semistatic | Endosulfan | 96 hours | 17     | Published  | Mane &       |           |
| corrianus   |            | (35EC)     |          |        |            | Muley        |           |
|             |            |            |          |        |            | (1984)       |           |
|             |            |            |          |        |            | A31349       |           |
|             | lat        | 1          |          |        | 1          | l            |           |
| Procambarus | Static     | Thiodan ®  | 96 hours | 24     | Published  | Naqvi et al. | Data for  |
| clarkii     |            |            |          |        |            | (1989) A     | juveniles |
|             |            |            |          |        |            | 43061        |           |

Table 2.6.2.2-2: Acute toxicity of the preparation to aquatic invertebrates
| Monograph | Volume I | Level 2 | 101 | Endosulfan | December 1999 |
|-----------|----------|---------|-----|------------|---------------|
|-----------|----------|---------|-----|------------|---------------|

| Test<br>organisms               | Study<br>type    | Chemical             | Test<br>duration | LC <sub>50</sub><br>(µg/l) | Study<br>conditions | Authors<br>Docs. Nº                    | Remarks                |
|---------------------------------|------------------|----------------------|------------------|----------------------------|---------------------|----------------------------------------|------------------------|
| Procambarus<br>clarkii          | Static           | Thiodan ®            | 96 hours         | 423                        | Published           | Naqvi et al.<br>(1989) A<br>43061      | Data for<br>adults     |
| Penaeus<br>monodon              | Renewal<br>daily | Endosulfan<br>(35EC) | 48 hours         | 4.6                        | Published           | Joshi &<br>Mukhopad<br>hyay A<br>48339 | Data for<br>postlarvae |
| Penaeus<br>monodon              | Renewal<br>daily | Endosulfan<br>(35EC) | 48 hours         | 12.2                       | Published           | Joshi &<br>Mukhopad<br>hyay A<br>48339 | Data for<br>juveniles  |
| Diverse<br>microcrustac<br>eans | Static           | Thiodan ® (33.7%)    | 48 hours         | 0.1-0.9                    | Published           | Naqvi &<br>Hawkins<br>(1989)<br>A43062 |                        |

The amount of information reported is lower than for the active substance and it is not easily validable. Therefore, the data presented for the active substance will be used in the assessment.

Due to the large differences of the toxicity data among close species the use of sensitivity distribution curves is not considered appropriate in this case. The rapporteur proposes the use of an  $LC_{50}$  of 0.04 µg/l, as the acute toxicity endpoint for the most sensitive aquatic invertebrate; and a 48 h.  $EC_{50}$  of 150 µg/l for *Daphnia magna* which corresponds to the 90<sup>th</sup> percentile for the data on this species.

Both values have been used for the TER calculations. The results are summarised in the next tables.

| Сгор         | Application<br>rate | Nº | SI<br>Days | Distance<br>m | Drift<br>% | Initial PECsw<br>µg as/L | TER  |
|--------------|---------------------|----|------------|---------------|------------|--------------------------|------|
| Citrus       | 1.05                | 2  | 14         | 3             | 15.5       | 54.25                    | 2.7  |
|              |                     |    |            | 10            | 4.5        | 15.75                    | 9.5  |
|              |                     |    |            | 50            | 0.2        | 0.70                     | 214  |
| Vineyards    | 1.05                | 2  | 14         | 3             | 7.5        | 26.25                    | 5.7  |
|              |                     |    |            | 10            | 1.5        | 5.25                     | 28   |
|              |                     |    |            | 50            | 0.2        | 0.70                     | 21.4 |
| Arable crops | 0.84                | 3  | 14         | 1             | 4.0        | 11.20                    | 13   |
|              |                     |    |            | 10            | 0.4        | 1.12                     | 134  |
|              |                     |    |            | 30            | 0.1        | 0.28                     | 536  |
| Arable crops | 0.53                | 3  | 7          | 1             | 4.0        | 7.07                     | 21   |
|              |                     |    |            | 10            | 0.4        | 0.71                     | 211  |
|              |                     |    |            | 30            | 0.1        | 0.18                     | 833  |

Table 2.6.2.2-2: Acute TER estimations for Daphnids

| Monograph | Volume I | Level 2 | 102 | Endosulfan | December 1999 |
|-----------|----------|---------|-----|------------|---------------|
|-----------|----------|---------|-----|------------|---------------|

| Сгор         | Application<br>rate | Nº | SI<br>Days | Distance<br>m | Drift<br>% | Initial PECsw<br>µg as/L | TER    |
|--------------|---------------------|----|------------|---------------|------------|--------------------------|--------|
| Citrus       | 1.05                | 2  | 14         | 3             | 15.5       | 54.25                    | 0.0007 |
|              |                     |    |            | 10            | 4.5        | 15.75                    | 0.003  |
|              |                     |    |            | 50            | 0.2        | 0.70                     | 0.06   |
| Vineyards    | 1.05                | 2  | 14         | 3             | 7.5        | 26.25                    | 0.002  |
|              |                     |    |            | 10            | 1.5        | 5.25                     | 0.008  |
|              |                     |    |            | 50            | 0.2        | 0.70                     | 0.06   |
| Arable crops | 0.84                | 3  | 14         | 1             | 4.0        | 11.20                    | 0.004  |
|              |                     |    |            | 10            | 0.4        | 1.12                     | 0.04   |
|              |                     |    |            | 30            | 0.1        | 0.28                     | 0.14   |
| Arable crops | 0.53                | 3  | 7          | 1             | 4.0        | 7.07                     | 0.006  |
|              |                     |    |            | 10            | 0.4        | 0.71                     | 0.06   |
|              |                     |    |            | 30            | 0.1        | 0.18                     | 0.22   |

| Table 2.6.2.2-3: Acute TER estimations for the most sensitive aquatic invertebra | rate |
|----------------------------------------------------------------------------------|------|
|----------------------------------------------------------------------------------|------|

The results obtained for the standard species, *Daphnia magna*, must be interpreted in an standard way, and therefore the use of the trigger value of 100 for this assessment is considered appropriate. The data indicate that using large buffer zones the potential risk of endosulfan for aquatic invertebrates can be managed at least in some crops.

The rapporteur considers than from an ecological point of view the risk for this most sensitive aquatic invertebrates should be covered by the risk for fish, and therefore no additional estimations are required. This conclusion is also supported by the information provided by the pond studies, which showed no relevant effects on the invertebrate community at concentrations producing fish kills.

Therefore, appropriate risk management measures should be proposed by the applicant and considered by Member States to avoid toxicity problems of cultured shrimps and related species. The rapporteur considered that due to the localised nature of shrimp culture, indications on the label and buffer zones around these cultures should be efficient enough to provide a proper risk management.

From chronic toxicity to aquatic invertebrates, the reported 21d NOEC for *Daphnia magna* of  $63 \mu g/l$  as measured concentration will be used in the risk assessment.

The TER long-term estimations are presented in this table.

| Monograph | Volume I | Level 2 | 103 | Endosulfan | December 1999 |
|-----------|----------|---------|-----|------------|---------------|
|-----------|----------|---------|-----|------------|---------------|

| Сгор         | Application<br>rate | Nº | SI<br>Days | Distance<br>m | Drift<br>% | Initial PECsw<br>µg as/L | TER  |
|--------------|---------------------|----|------------|---------------|------------|--------------------------|------|
| Citrus       | 1.05                | 2  | 14         | 3             | 15.5       | 54.25                    | 1.1  |
|              |                     |    |            | 10            | 4.5        | 15.75                    | 4    |
|              |                     |    |            | 50            | 0.2        | 0.70                     | 90   |
| Vineyards    | 1.05                | 2  | 14         | 3             | 7.5        | 26.25                    | 2.4  |
|              |                     |    |            | 10            | 1.5        | 5.25                     | 12   |
|              |                     |    |            | 50            | 0.2        | 0.70                     | 90   |
| Arable crops | 0.84                | 3  | 14         | 1             | 4.0        | 11.20                    | 5.7  |
|              |                     |    |            | 10            | 0.4        | 1.12                     | 56   |
|              |                     |    |            | 30            | 0.1        | 0.28                     | 2.25 |
| Arable crops | 0.53                | 3  | 7          | 1             | 4.0        | 7.07                     | 8.9  |
|              |                     |    |            | 10            | 0.4        | 0.71                     | 90   |
|              |                     |    |            | 30            | 0.1        | 0.18                     | 350  |

Table 2.6.2.2-4: Long-term estimations for Dapnids.

The results show a potential long-term risk, with TER values below the trigger, when no buffer zones are applied, while the risk can be reduced to acceptable levels for all crops by requiring appropriate buffer zones.

#### 2.6.2.3 Effects on algae

The information on algae is limited to a reduced number of species and the most relevant information corresponds to the data on an standard species under standard conditions. Therefore, the 72h NOEC obtained for the green alga *Scenedesmus subspicatus* of 560  $\mu$ g/l and an LC<sub>50</sub> reported as higher than this value will be used.

| Сгор         | Application<br>rate | Nº | SI<br>Days | Distance<br>m | Drift<br>% | Initial PECsw<br>µg as/L | TER  |
|--------------|---------------------|----|------------|---------------|------------|--------------------------|------|
| Citrus       | 1.05                | 2  | 14         | 3             | 15.5       | 54.25                    | 10.3 |
|              |                     |    |            | 10            | 4.5        | 15.75                    | 36   |
|              |                     |    |            | 50            | 0.2        | 0.70                     | 800  |
| Vineyards    | 1.05                | 2  | 14         | 3             | 7.5        | 26.25                    | 22   |
|              |                     |    |            | 10            | 1.5        | 5.25                     | 108  |
|              |                     |    |            | 50            | 0.2        | 0.70                     | 800  |
| Arable crops | 0.84                | 3  | 14         | 1             | 4.0        | 11.20                    | 50   |
|              |                     |    |            | 10            | 0.4        | 1.12                     | 500  |
|              |                     |    |            | 30            | 0.1        | 0.28                     | 2000 |
| Arable crops | 0.53                | 3  | 7          | 1             | 4.0        | 7.07                     | 79   |
|              |                     |    |            | 10            | 0.4        | 0.71                     | 800  |
|              |                     |    |            | 30            | 0.1        | 0.18                     | 3111 |

Table 2.6.2.3-1: Acute TER estimations for algae

The TER values are higher than the trigger value of 10 and therefore is concluded that endosulfan does not represent a relevant risk for algae and aquatic plants.

| Monograph | Volume I | Level 2 | 104 | Endosulfan | December 1999 |
|-----------|----------|---------|-----|------------|---------------|
|-----------|----------|---------|-----|------------|---------------|

#### 2.6.2.4 Effects on dwelling organisms

The available information on the toxicity of endosulfan to sediment dwelling species is summarised in Table 2.6.2.4-1.

| Test organism          | study    | Tes    | Test |         | NOEC  | Study     | Author        |
|------------------------|----------|--------|------|---------|-------|-----------|---------------|
|                        | type     | durati | ion  | µg/кg   | µg/кg |           |               |
| Chironomus plumosus    | static   | 48     | h    | 25 µg/l | n.r.  | Published | Goebel et al. |
| (true midges)          | acute    |        |      |         |       |           | 1982          |
| Chironomus tentans     | sediment | 96     | h    | 20      | <6    | GLP       | Swigert &     |
| (true midges)          | test     |        |      |         |       |           | Mullen (1988) |
| Nannopus palustris     | sediment | 7      | d    | n.r.    | 50    | Published | Chandler &    |
| (benthic copepod)      | test     |        |      |         |       |           | Scott (1991)  |
| Pseudobradya pulchella | sediment | 7      | d    | n.r.    | 200   | Published | Chandler &    |
| (harpacticoid copepod) | test     |        |      |         |       |           | Scott (1991)  |
| Streblospio benedicti  | sediment | 7      | d    | n.r.    | <50   | Published | Chandler &    |
| (polychaete)           | test     |        |      |         |       |           | Scott (1991)  |

| Table | 2.6.2.4-1 | : Toxicity | effects on | sediment | species |
|-------|-----------|------------|------------|----------|---------|
|       |           |            |            |          |         |

n.r.: not reported

The rapporteur concludes that no valid information on the chronic toxicity of endosulfan to sediment dwelling organisms has been submitted.

The acute  $LC_{50}$  of 20 µg/kg sediment of endosulfan on the Chironomid midge *Chironomus tentans* has been considered the most valuable information to estimate the acute toxicity of endosulfan for sediment dwelling organisms, while a valid chronic NOEC cannot be estimated from the available laboratory tests.

In addition, no valid chronic toxicity data have been submitted, and no information on the acute and chronic toxicity of the metabolites, and particularly of endosulfan sulphate, has been presented. Therefore a proper risk assessment for sediment dwelling organisms cannot be produced but at least a potential short term risk has been identified.

A pond study confirms the potential of endosulfan to achieve higher concentrations in the sediment. Even for this non-worst case scenario, the concentrations in the sediment are up to 2.5 and 5 times higher than the acute toxicity to chironomids estimated from laboratory species. Therefore, additional information is required for a proper assessment of the potential risk of endosulfan for sediment dwelling organisms.

| Monograph | Volume I | Level 2 | 105 | Endosulfan | December 1999 |
|-----------|----------|---------|-----|------------|---------------|
|-----------|----------|---------|-----|------------|---------------|

#### 2.6.3 Effect assessment for bees and other non-target arthropds.

The acute oral toxicity of endosulfan is only available for the formulated product, which showed to be more toxic that the technical substance in contact toxicity tests. Therefore the data for the formulated product,  $2 \mu g$  a.i./bee for the oral toxicity and  $0.82 \mu g$  a.i./bee for contact toxicity have been used in the assessment. Results have been summarised in the following table.

| Application rate<br>(kg as/ha) | Сгор                             | Route   | Hazard quotient |
|--------------------------------|----------------------------------|---------|-----------------|
| 1.05                           | Citrus, pome fruit and vineyards | Oral    | 525             |
| 1.05                           | Citrus, pome fruit and vineyards | Contact | 1280            |
| 0.53                           | Tomatoes, Potatoes               | Oral    | 265             |
| 0.53                           | Tomatoes, Potatoes               | Contact | 646             |
| 0.8                            | Stone fruits                     | Oral    | 400             |
| 0.8                            | Stone fruits                     | Contact | 975             |
| 0.53                           | Cucurbits                        | Oral    | 265             |
| 0.53                           | Cucurbits                        | Contact | 646             |

Table 2.6.3-1: Hazard quotients for honey bees.

All HQ are higher than the trigger value and therefore a potential risk for bees must be considered. The filed study submitted is not validable and therefore, validable higher tier studies are required.

Regarding other non-target arthropods a set of non standard laboratory data and field studies suggest that endosulfan posses a risk for several species. Additional information for a proper assessment is required.

#### 2. 6.4 Effect assessment for earthworms

The toxicity data for earthworms is summarised in the following table

| Monograph | Volume I | Level 2 | 106 | Endosulfan | December 1999 |
|-----------|----------|---------|-----|------------|---------------|
|-----------|----------|---------|-----|------------|---------------|

| Test       | Study type      | Substance  | Test     | LC/EC <sub>50</sub> | NOEC ppm | Author        |
|------------|-----------------|------------|----------|---------------------|----------|---------------|
| organism   |                 |            | duration | ppm                 |          |               |
| Eisenia    | Artificial soil | Technical  | 14 days  | 14                  | 0.1      | Fischer 1990  |
| foetida    | test (OECD)     | grade      |          |                     |          | A43674        |
|            |                 | (97.7%)    |          |                     |          |               |
| Pheretima  | Soil pot        | Technical  | 24 h     | 5.01                | -        | Hans et al.   |
| posthuma   |                 | grade      |          |                     |          | 1990. A       |
|            |                 |            |          |                     |          | 53744         |
| Lumbricus  | Natural soil    | Thiodan 35 | 14 days  | 23.9                | -        | Haque and     |
| terrestris |                 |            |          |                     |          | Ebing, 1983.  |
|            |                 |            |          |                     |          | A28776        |
| Eisenia    | Artificial soil | Thiodan    | 14 days  | 9.4 (a.i)           | -        | Heimbach      |
| foetida    | test            |            |          |                     |          | 1985. A       |
|            |                 |            |          |                     |          | 32902         |
| Eisenia    | Artificial soil | Endosulfan | 28 days  | 6.7 (a.i.)          | -        | Heimbach      |
| foetida    | test            | 35%        |          |                     |          | 1984. A       |
| andrei     |                 |            |          |                     |          | 32903         |
| Eisenia    | Artisol test    | Endosulfan | 14 days  | 3 (a.i)             | -        | Heimbach      |
| foetida    |                 | 35%        |          |                     |          | 1984. A       |
| andrei     |                 |            |          |                     |          | 32903         |
| Eisenia    | Artificial soil | Endosulfan | 14 days  | 30.3                | 0.32     | Fischer 1990. |
| foetida    |                 | 35 EC      |          |                     |          | A 43675       |
| Natural    | Semi-arid       | Endosulfan | 80 days  | No                  | -        | Reddy and     |
| population | tropical        | 35% EC     |          | earthworms          |          | Reddy. 1992.  |
|            | grassland       |            |          | at high dose        |          | A 51812       |
|            |                 |            |          | tested.             |          |               |
|            |                 |            |          | Significantly       |          |               |
|            |                 |            |          | reduced at          |          |               |
|            |                 |            |          | normal dose         |          |               |

| Table 2. 6.4-1:       Summary of the results of the effects of endosulfan on | earthworms |
|------------------------------------------------------------------------------|------------|
|------------------------------------------------------------------------------|------------|

Several studies on the toxicity of endosulfan to earthworms have submitted. The standard species *Eisenia foetida* showed to be of intermediate sensitivity and the 14 days  $LC_{50}$  of endosulfan for earthworms has been estimated using a geometric mean of the validated toxicity data for *Eisenia foetida* obtained under the standard conditions. This value is 11 mg/kg.

The acute risk assessment of endosulfan for earthworms has been estimated for all the crops. The results are summarised in the following table:

| Сгор                            | Application rate | PECs several<br>(ppm) | 14 d LC50 (ppm) | TERst |
|---------------------------------|------------------|-----------------------|-----------------|-------|
| Citrus, pome fruits vine grapes | 1.05             | 1.33                  | 11              | 8.3   |
| Cotton                          |                  | 1.52                  | 11              | 7.2   |
| Tomatoes                        |                  | 0.69                  | 11              | 16    |
| Potatoes                        |                  | 0.67                  | 11              | 16.4  |
| Stone fruits                    |                  | 1.44                  | 11              | 7.6   |
| Cucurbits                       |                  | 1                     | 11              | 11    |
| Sugar beet                      |                  | 0.63                  | 11              | 17.4  |
| Hazel nuts                      |                  | 1.01                  | 11              | 10.9  |

 Table 2.6.4-2: TER short-term estimations for earthworms

Several values are above the trigger, and therefore the results indicate that endosulfan has a potential acute risk for earthworms in many crops (citrus, cotton and stone fruits).

No information on the reproduction toxicity of endosulfan on earthworms has been presented, and a NOEC cannot be extracted from the field study because the results showed effects even at the lowest application rate. Therefore, the long term risk can not be estimated due to lack of data. At the same time, there are not available information about metabolites.

The rapporteur concludes that a potential acute risk has been identified in certain cases, which must be addressed at a higher tier level, and that information on the long term effects of both the active substance and the metabolites is required.

#### 2.6.5 Effects on soil non target micro-organisms

The submitted data show that no effects of endosulfan on nitrogenase activity, ammonification and nitrification processes and on soil respiration are expected even at application rates of 5 to 10 times higher than the maximum intended rate.

It is concluded that the risk of endosulfan for soil micro-organisms is relatively low.

#### 2.6.6 Effects on other non-target organisms (flora and fauna) believed to be at risk

Endosulfan is also highly toxic for some amphibian species. The risk is covered by the risk assessment for fish.

#### 2.6.7 Effects on biological methods of sewage treatment

No information has been submitted.

# **APPENDIX 1**

#### STANDARD TERMS AND ABBREVIATIONS

#### Part 1 Technical Terms

| А                 | Ampere                                        |
|-------------------|-----------------------------------------------|
| a                 | Area                                          |
| ACCase            | Acetyl-CoA-carboxylase                        |
| ACh               | acetilcholine                                 |
| AChE              | acetilcholinesterase                          |
| ADI               | Acceptable daily intake                       |
| ADP               | Adenosine diphosphate                         |
| AE                | Acid equivalent                               |
| AFID              | alkali flame-ionization detector or detection |
| A/G               | Albumin/globulin ratio                        |
| ai                | Active ingredient                             |
| ALD <sub>50</sub> | Approximate median lethal dose, 50%           |
| ALT               | Alanine aminotransferase (SGPT)               |
| AMD               | Automatic multiple development                |
| ANOVA             | Analysis of variance                          |
| AOEL              | Acceptable operator exposure level            |
| AOLD              | Approximate oral lethal dose                  |
| AOPP              | aryloxyphenoxypropanoates                     |
| AP                | Alkaline phosphatase                          |
| approx.           | approximate                                   |
| appr.             | Approximately                                 |
| AR                | Applied radioactivity                         |
| AR                | Area of cornea involved                       |
| ARC               | Anticipated residue contribution              |
| ARfD              | Acute reference dose                          |
| as                | Active substance                              |
| AST               | Aspartate aminotransferase (SGOT)             |
| ASV               | Air saturation value                          |
| ATP               | Adenosine triphosphate                        |
| AUC               | Area under the curve                          |
| AUD               | Area under the data                           |
| AUD <sub>1</sub>  | Area under the data at time 1                 |
|                   |                                               |
| β                 | Mean elimination rate constant                |
| BCF               | Bioconcentration factor                       |
| bfa               | Body fluid assay                              |
| BOD               | Biological oxygen demand                      |
| bp                | Boiling point                                 |
| BrdU              | Bromocleoxyuridine                            |
| BSAF              | Biota-sediment accumulation factor            |
| BSE               | Bovine spongiform encephalopathie             |
| BSP               | bromosulfophthalein                           |
| Bt                | Bacilus thuringiensis                         |
| Bti               | Bacilus thuringiensis israelensis             |
| Btt               | Bacilus thuringiensis tenebrionis             |
| BUN               | Blood urea nitrogen                           |
| Bw/bwt            | Body weight                                   |
|                   | 2                                             |
| c                 | Centi- $(x \ 10^{-2})$                        |
| С                 | Concentrations                                |
| $C_0$             | Initial concentration                         |

| Monograph | Volume I | Appendix 1 | 109 | Endosulfan | December 1999 |
|-----------|----------|------------|-----|------------|---------------|
|-----------|----------|------------|-----|------------|---------------|

| CADegree census (centingrade)CAControlled atmosphereCADComputer aided dossier and data supply (an electronic dossier interchange and<br>archiving format)CAS nameChemical abstract namecdcandelaCDACompleter aided dossier and data supply (an electronic dossier interchange and<br>archiving format)CAS nameChemical abstract namecdcandelaCDAComplementary DNACECCation exchange capacitycfConfidential intervalCLConfidential intervalCLConfidential limitscmCential exchange capacitycfConfidential limitscmCential entropyCMCCaarboxymethyl celluloseCmaxMaximum plasma concentrations of total radioactivityCNSCentral entropy systemCODChemical oxygen demandCPFCyclophosphamidecvCoefficient of variationcvCoefficient of variationcvCoefficient of variationcvCoefficient of variationcvCoefficient of MNDCell diameterDAMCDays after the maximum concentrationDAMCDays after the maximum concentrationDAMDays after the adapticationDCMdichoromethaneDESdiethylstilboestrolDFRDisogeable foliar residueDIdeischargedi.detection limitDMDeysinated national authoritydinaDes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90                    | $\mathbf{D}_{\mathbf{r}}$                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------|
| CAD       Computer aided design         CADDY       Computer aided dosigr and data supply (an electronic dossier interchange and archiving format)         CAS name       Chemical abstract name         cd       candela         CDA       Computer aided drop(let) application         cDA       Controlled drop(let) application         cDNA       Complemetary DNA         CEC       Cation exchange capacity         cf       Confidential interval         CG       Cytoplasmatic grain         CI       Confidential interval         CL       Confidential interval         CL       Confidential interval         CM       Caarboxymethyl cellulose         Cama       Maximum plasma concentrations of total radioactivity         CNS       Centarine phosphatase         CPF       Cyclophosphamide         ev       Coefficient of variation         CV       Ceiling value         CXL       Code Maximum Resideu Limit (Codex MRL)         d       day         d       Daiameter of MN         D       Ceil diameter         D       Applied dosage         DAMC       Day after thematinum concentration         DAF       Days after thematinum concentra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       | Controlled struggede                                                          |
| CAD Computer aided dessign<br>CADDY Computer aided dossier and data supply (an electronic dossier interchange and<br>archiving format)<br>CAS name Chemical dostract name<br>ed candela<br>CDA Controlled drop(let) application<br>cDNA Complementary DNA<br>CEC Gation exchange capacity<br>ef Confer, compare to<br>CFU Colony forming units<br>CG Cytoplasmatic grain<br>CL Confidential limits<br>CG Confidential limits<br>CG Confidential limits<br>CG Confidential limits<br>CG Carboxymethyl cellulose<br>Cmax Maximum plasma concentrations of total radioactivity<br>CNS Central nervous system<br>COD Chemical oxygen demand<br>CPK Creatinice prosphatase<br>CPP Cyclophosphamide<br>CV Coefficient of variation<br>CV Coefficient of mN<br>D Cell diameter<br>D Applied dosage<br>DAMC Days after the maximum concentration<br>DAP Days after the maximum concentration<br>DAP Days after the maximum concentration<br>DAMC Days after treatment/application<br>DCM dichloromethane<br>DES diethylstilboestrol<br>DFR Dislogeable foliar residue<br>DI deischarge<br>d.1. detection limit<br>DM Dy matter<br>DMAO Disolved organic carbon<br>dipi Days pot incolled for 50 per cent dissipation (define method of estimation)<br>DT <sub>50,eaf</sub> Reference half life<br>DT <sub>50</sub> , eaf Reference half life<br>DT <sub>50</sub> , each Calculated half life<br>DT <sub>50</sub> , Period required for 50 per cent dissipation (define method of estimation)<br>dw Dy weight<br>DWQQ |                       | Controlled atmosphere                                                         |
| CADD Computer alice dossier and data supply (an electronic dossier interchange and<br>archiving format)<br>CAS name Chemical abstract name<br>cd candela<br>CDA Controlled drop(let) application<br>cDNA Complemetary DNA<br>CEC Cation exchange capacity<br>cf Confer, compare to<br>CFU Colony forming units<br>CG Cytoplasmatic grain<br>CL Confidential limits<br>cm Centimetre<br>CMC Canboxymethyl cellulose<br>Cmax Maximum plasma concentrations of total radioactivity<br>CNS Central nervous system<br>COD Chemical oxygen demand<br>CPK Creatinine phosphatase<br>CPP Cyclophosphamide<br>cv Coefficient of variation<br>CV Ceiling value<br>CXL Codex Maximum Resideu Limit (Codex MRL)<br>d day<br>d Diameter of MN<br>D Cell diameter<br>D Applied dosage<br>DAMC Days after planting<br>DATD Days after the maximum concentration<br>DFR Dislogeable foliar residue<br>DI detection limit<br>DM Dry matter<br>DMSO Dimethylsulfloxitde<br>DNA Desider dosagen<br>DATD Days after planting<br>DATD Days diver and the automation<br>DFR Dislogeable foliar residue<br>DI detection limit<br>DM Dry matter<br>DMSO Dimethylsulfoxide<br>DNA Desisolved oxygen<br>DOC Dissolved oxygen<br>DOC Dissolved oxygen<br>DT Disappearance time<br>DT <sub>500</sub> , <i>ref</i> Reference half life<br>DT <sub>500</sub> Period required for 50 per cent dissipation (define method of estimation)<br>DT <sub>500</sub> , <i>ref</i> Calculated half life<br>DT <sub>500</sub> Period required for 90 per cent dissipation (define method of estimation)<br>DT <sub>500</sub> , <i>ref</i> Calculated half life<br>DT <sub>500</sub> Period required for 90 per cent dissipation (define method of estimation)<br>dw Dry weight<br>DWQG Divishig water quality guidelines<br>$\epsilon$ Decadic molar extinction coefficient<br>EC <sub>4</sub> Effective concentration that produces x% of effect<br>EC <sub>50</sub> Median effective concentration for 50 per cent dissipation (define method of estimation)                                                                                                                                        | CAD                   | Computer aided design                                                         |
| archiving formati)           cAS name           cd           candela           CDA           Controlled drop(let) application           cDNA           Complementary DNA           CEC           Cation exchange capacity           cf           Confer, compare to           CFU           Confidential limits           Cm           Centimetre           CMC           Carboxymethyl cellulose           Cmx           Cmx           Contrial oxygen demand           CPP           Cyclophosphamide           ev           cv           CPM           Cyclophosphamide           ev           cv           Codex Maximum Resideu Limit (Codex MRL)           d           day           d           Days after the maximum concentration           CAP           Cyclophosphamide           ev           Codex Maximum Resideu Limit (Codex MRL)           d           day           d           Diameter of MN           D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CADDY                 | Computer aided dossier and data supply (an electronic dossier interchange and |
| CAS name Chemical abstract name<br>ed candela<br>CDA Controlled drop(let) application<br>cDNA Complemetary DNA<br>CEC Cation exchange capacity<br>ef Confer, compare to<br>CFU Colony forming units<br>CG Cytoplasmatic grain<br>CI Confidential limits<br>cm Centimetre<br>CMC Carboxymethyl cellulose<br>C <sub>max</sub> Maximum plasma concentrations of total radioactivity<br>CNS Central nervous system<br>COD Chemical oxygen demand<br>CPK Creatinine phosphatase<br>CPP Cyclophosphamide<br>ev Coefficient of variation<br>CV Ceiling value<br>CXL Codex Maximum Resideu Limit (Codex MRL)<br>d day<br>d Diameter of MN<br>D Cell diameter<br>D Applied dosage<br>DAMC Days after the maximum concentration<br>DAT Day after treatment/application<br>DCM dichoromethane<br>DES diethylstibloestrol<br>DFR Dislogeable foliar residue<br>DI deischarge<br>d.1. detection limit<br>DM Dry matter<br>DMSO Dimethylsulfoxide<br>DNA Deoxiribonuclei acid<br>dna Designated national authority<br>dna Dispoleratory Der cent dissignation (define method of estimation)                                                                                                                     | CAG                   | archiving format)                                                             |
| cdcancetaCDAControlled drop(let) applicationeDNAComplemetary DNACECCation exchange capacity $f$ Confer, compare toCFUColony forming unitsCGCytoplasmatic grainCIConfidential intervalCLConfidential intervalCLConfidential intervalCMCCaarboxymethyl celluloseCmaxMaximum plasma concentrations of total radioactivityCNSCentral nervous systemCODChemical oxygen demandCPVCyclophosphamidecvCoefficient of variationCVCelling valueCXLCodex Maximum Resideu Limit (Codex MRL)ddayddayddaydDays after the maximum concentrationDAPDays after treatment/applicationDCMdicthylstilboestrolDFRDisogeable foliar residueDIdeitschargeDMADorimbusultoxideDMADorimbusultoxideDMADorimbusultoxideDADimethylsulfoxideDADisolved oxygenDCCDissolved oxygen <td>CAS name</td> <td>Chemical abstract name</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CAS name              | Chemical abstract name                                                        |
| CDAControlled drop(lef) applicationcDNAComplementary DNACECCation exchange capacity $q^{f}$ Confree, compare toCFUColony forming unitsCGCytoplasmatic grainCIConfidential limitscmCentimetreCMCCaarboxymethyl celluloseCmaxMaximum plasma concentrations of total radioactivityCNSCentral nervous systemCODChemical oxygen demandCPKCreatinine phosphataseCPPCyclophosphamidecvCoefficient of variationCVCell diameterCALCodex Maximum Resideu Limit (Codex MRL)ddaydDiameter of MNDCell diameterDApplied dosageDAMCDays after the maximu concentrationDAPDays after the maximu concentrationDAPDays after plantingDATDay after residueDIdeitscharged.1.detection limitDMSODimethylsulfoxideDNADeoxiribonuclei acidDADesinded DNA-synthesisDOCDisolved oxygenDOCDisolved oxygenDOCDisolved oxygenDOCDisolved oxygenDOCDisolved oxygenDMSODirectlylsulfoxideDTDisolved oxygenDOCDisolved oxygenDOCDisolved oxygenDOCDisolved oxygenDOCDisolved oxygenDOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ca<br>CD A            |                                                                               |
| CDNAComplementary DNACECCation exchange capacity $f$ Confer, compare toCHColony forming unitsCGCytoplasmatic grainCIConfidential intervalCLConfidential intervalCLConfidential intervalCRCarboxymethyl colluloseCmaxMaximum plasma concentrations of total radioactivityCNSCentral nervous systemCODChemical oxygen demandCPKCreatinine phosphataseCPPCyclophosphamidecvCoefficient of variationCVCelling valueCXLCodex Maximum Resideu Limit (Codex MRL)ddaydDiameter of MNDCell diameterDApplied dosageDAMCDays after the maximum concentrationDATDay after tratemetr/applicationDCMdicthylstilboestrolDFRDislogeable foliar residueDIdiethylstilboestrolDFRDislogeable foliar residueDMDry matterDMSODimethylsulfoxideDNADeoxiribonuclei aciddnaDesignated national systemDTDislogeable foliar residueDTDislogeable foliar residueDT <td>CDA</td> <td>Controlled drop(let) application</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CDA                   | Controlled drop(let) application                                              |
| CEC Cation exchange capacity<br>f Confer, compare to<br>CFU Colony forming units<br>CG Cytoplasmatic grain<br>CL Confidential limits<br>cm Centimetre<br>CMC Caarboxymethyl cellulose<br>C <sub>max</sub> Maximum plasma concentrations of total radioactivity<br>CMS Central nervous system<br>COD Chemical oxygen demand<br>CPK Creatinine phosphatase<br>CPP Cyclophosphamide<br>Cv Coefficient of variation<br>Cv Coefficient of variation<br>CV Celling value<br>CXL Codex Maximum Resideu Limit (Codex MRL)<br>d day<br>d Diameter of MN<br>D Cell diameter<br>D Applied dosage<br>DAMC Days after the maximum concentration<br>DAP Days after the maximum concentration<br>DAT Day after treatment/application<br>DCM dichloromethane<br>DES diethylstilboestrol<br>DFR Dislogeable foliar residue<br>DI deischarge<br>d.1. detection limit<br>DM Dry matter<br>DMSO Dimethylsulfoxide<br>DNA Deoxiribonuclei acid<br>dna Designated national authority<br>dns Unscheduled DNA-synthesis<br>DOC Dissolved oxygen<br>DOC Dissolved oxygen<br>DFR Dislogvable collar residue<br>DT Dislogvable collar residue<br>DT Dislogvable Angenter<br>DASS Ditentylsulfoxide<br>DNA Deoxiribonuclei acid<br>dna Designated national authority<br>dns Unscheduled DNA-synthesis<br>DOC Dissolved oxygen<br>DOC Dissolved oxygen<br>DMSO Dimethylsulfoxide<br>DT Disappearance time<br>DT Disappearance time<br>ES Decadic molar extinction coeffic                                                                                        | CDNA                  | Complementary DNA                                                             |
| $q$ Conter, compare toCFUColony forming unitsCGCytoplasmatic grainCIConfidential intervalCLConfidential limitscmCentimetreCMCCaarboxymethyl cellulose $C_{max}$ Maximum plasma concentrations of total radioactivityCNSCentral nervous systemCODChemical oxygen demandCPKCreatinine phosphataseCPPCyclophosphamidecvCoefficient of variationCvCoefficient of variationCvCoefficient of variationCvCoefficient of MNDCell diameterDApplied dosageDARCDays after the maximum concentrationDAPDays after plantingDATDay after plantingDATDay after plantingDATDays after statueDIdetection limitDMDry matterDMSODimethylsulfoxideDNADeoxirbonuclei aciddnaDesignated national authoritydnaDesignated carbondjiDays pot inoculationDCCDissolved organic carbondpiDays pot inoculationDTso, edCalculated half lifeDTso, edCalculated half lifeDTso, ed <td>CEC</td> <td>Cation exchange capacity</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CEC                   | Cation exchange capacity                                                      |
| CFUColory forming unitsCGCytoplasmatic grainCIConfidential limitscmCentimitreCMCCaarboxymethyl cellulose $C_{max}$ Maximum plasma concentrations of total radioactivityCNSCentral nervous systemCODChemical oxygen demandCPFCyclophosphamidecvCoefficient of variationCVCelling valueCXLCodex Maximum Resideu Limit (Codex MRL)ddaydDiameter of MNDCell diameterDApplied dosageDAMCDays after plantingDATDay after treatment/applicationDCMdichloromethaneDESdiethylstilboestrolDFRDilogeable foliar residueDIdetection limitDMDry matterDMSODimethylsulfoxideDNADy softer days after plantingDATDays after planting <t< td=""><td><i>cf</i></td><td>Confer, compare to</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <i>cf</i>             | Confer, compare to                                                            |
| CGCytoplasmatic grainCIConfidential limitscmConfidential limitscmConfidential limitscmCaraboxymethyl cellulose $C_{max}$ Maximum plasma concentrations of total radioactivityCNSCentral nervous systemCODChemical oxygen demandCPKCreatinine phosphataseCPPCyclophosphamideevCoefficient of variationCVCeiling valueCXLCodex Maximum Resideu Limit (Codex MRL)ddaydDiameter of MNDCell diameterDApplied dosageDAMCDays after the maximum concentrationDATDay after treatment/applicationDCMdichloromethaneDESdiethylstiboestrolDFRDislogeable foliar residueD1deischarged.1detection limitDMDry matterDMSODissolved oxygenDOCDissolved oxygenDOCDissolved oxygenDOCDissolved organic carbondpiDays pot inoculationDTso. erCalculated half lifeDTso. erDecarier for 90 per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CFU                   | Colony forming units                                                          |
| CLConfidential intervalCLConfidential limitscmCentimetreCMCCaarboxymethyl cellulose $C_{max}$ Maxinum plasma concentrations of total radioactivityCNSCentral nervous systemCODChemical oxygen demandCPKCreatinine phosphataseCPPCyclophosphamide $ev$ Coefficient of variationCVCeiling valueCXLCodex Maximum Resideu Limit (Codex MRL)ddaydDiameter of MNDCell diameterDApplied dosageDAMCDays after the maximum concentrationDAPDays after plantingDATDay after treatment/applicationDCMdichloromethaneDESdichlythyltiboestrolDFRDislogeable foliar residueDIdetection limitDMDry matterDMADDissolved oxygenDODissolved oxygenDODissolved organic carbondpiDays poincoulationDRESDitetary risk evaluation systemDTDisappearance timeDTs0Period required for 50 per cent dissipation (define method of estimation)DTs0Period required for 50 per cent dissipation (define method of estimation)DTs0Reference half lifeDTs0Period required for 90 per cent dissipation (define method of estimation)DTs0Period required for 90 per cent dissipation (define method of estimation)DTs0Reference half life<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CG                    | Cytoplasmatic grain                                                           |
| CLContridential limitscmCentimetreCMCCaarboxymethyl cellulose $C_{max}$ Maximum plasma concentrations of total radioactivityCNSCentral nervous systemCODChemical oxygen demandCPKCreatinine phosphataseCPPCyclophosphamidecvCoefficient of variationCvCoefficient of variationCvCoefficient of variationCvCoek Maximum Resideu Limit (Codex MRL)ddaydDameter of MNDCell diameterDApplied dosageDAACDays after the maximum concentrationDAPDays after plantingDATDay after treatment/applicationDCMdichloromethaneDESdiethylstiboestrolDFRDislogeable foliar residueDIdeischarged.1.detection limitDMADeoxiribonuclei aciddnaDesignated national authoritydnaDesignate carbondpiDisolved oxygenDOCDissolved oxygenDOCDisolved oxygenDOCDisolved required for 50 per cent dissipation (define method of estimation)DTs0.eakCalculated half lifeDTs0.eakCalculated half lifeDTs0.eakCalculated half lifeDTs0.eakCalculated half lifeDTs0.eakCalculated half lifeDTs0.eakCalculated half lifeDTs0.eakCalculated half lifeDTs0.eakDecadic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CI                    | Confidential interval                                                         |
| cmCentimetreCMCCaarboxymethyl cellulose $C_{max}$ Maximum plasma concentrations of total radioactivityCNSCentral nervous systemCODChemical oxygen demandCPKCreatinine phosphataseCPPCyclophosphamidecvCoefficient of variationCVCoefficient of variationCVCoefficient of variationCVCoefficient of variationCVCoefficient of variationCVCoefficient of variationCVCoefficient of variationCVCodex Maximum Resideu Limit (Codex MRL)ddaydDameter of MNDCell diameterDApplied dosageDAMCDays after the maximum concentrationDATDay after treatment/applicationDCMdichloromethaneDESdiethylstilboestrolDFRDislogeable foliar residueDIdeischarged.1.detection limitDMDry matterDMSODimethylsulfoxideDNADeoxiribonuclei aciddnaDesignated national authoritydnsUnscheduled DNA-synthesisDODissolved organic carbondpiDays per ance timeDTDisappearance timeDTDisappearance timeDTDisappearance timeDTDisappearance timeDTDisappearance timeDTDisappearance timeDTsoPeriod required for 50 per cent dissipatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CL                    | Confidential limits                                                           |
| CMCCarboxymethyl cellulose $C_{max}$ Maximum plasma concentrations of total radioactivityCNSCentral nervous systemCODChemical oxygen demandCPKCreatinine phosphataseCPPCyclophosphamidecvCoefficient of variationCvCeiling valueCXLCodex Maximum Resideu Limit (Codex MRL)ddaydDiameter of MNDCell diameterDApplied dosageDAARCDays after the maximum concentrationDAPDays after plantingDATDay after treatment/applicationDCMdichoromethaneDESdiethylstilboestrolDFRDislogeable foliar residueDIdeischarged.Ldetection limitDMSODimethylsulfoxideDAADesiribonuclei aciddnaDesignated national authoritydnsUnscheduled DNA-synthesisDOCDissolved organic carbondpiDays pot inoculationDTDisappearance timeDT50Period required for 90 per cent dissipation (define method of estimation)DTs0, eakCalculated half lifeDT50Period required for 90 per cent dissipation (define method of estimation)DT50Period required for 90 per cent dissipation (define method of estimation)DT50Period required for 90 per cent dissipation (define method of estimation)DT50Period required for 90 per cent dissipation (define method of estimation)DT50Peri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cm                    | Centimetre                                                                    |
| CumarMaximum plasma concentrations of total radioactivityCNSCentral nervous systemCODChemical oxygen demandCPKCreatinine phosphataseCPPCyclophosphamidecvCoefficient of variationCvCeiling valueCXLCodex Maximum Resideu Limit (Codex MRL)ddaydDiameter of MNDCell diameterDApplied dosageDAMCDays after the maximum concentrationDAPDays after plantingDATDay after treatment/applicationDCMdichloromethaneDESdiethylstilboestrolDFRDislogeable foliar residueDIdeischarged.1.detection limitDMDry matterDNSODimethylsulfoxideDNADesignated national authoritydnaDesignated national authoritydnaDesignated national authoritydnaDesignated national systemDTDisoplearance timeDTS0, after Reference half lifeDTs0, eakCalculated half lifeDTs0, eakReference half lifeDTs0, eakReference half lifeDTs0, eakDerived for 90 per cent dissipation (define method of estimation)dwDry weightDWQGDrinking water quality guidelines $\mathcal{E}$ Decadic molar extinction coefficient $\mathcal{E}_{x}$ Electron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | СМС                   | Caarboxymethyl cellulose                                                      |
| CNSCentral nervous systemCODChemical oxygen demandCPKCreatinine phosphataseCPPCyclophosphamidecvCoefficient of variationCvCeiling valueCXLCodex Maximum Resideu Limit (Codex MRL)ddaydDiameter of MNDCell diameterDApplied dosageDAMCDays after the maximum concentrationDAPDays after plantingDATDay after treatment/applicationDCMdichloromethaneDESdiethylstilboestrolDFRDislogeable foliar residueDIdeischarged.l.detection limitDMDry matterDMSODimethylsulfoxideDNADeoxiribonuclei aciddnaDesignated national authoritydnsUnscheduled DNA-synthesisDOCDissolved organic carbondpiDays pot inoculationDTS0, eakeCalculated half lifeDTs0, eakeCalculated half lifeDTs0, extreme Calculated half lifeDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C <sub>max</sub>      | Maximum plasma concentrations of total radioactivity                          |
| CODChemical oxygen demandCPKCreatinine phosphataseCPPCyclophosphamide $cv$ Coefficient of variation $Cv$ Ceiling valueCXLCodex Maximum Resideu Limit (Codex MRL)ddaydDiameter of MNDCell diameterDApplied dosageDAMCDays after the maximum concentrationDAPDays after treatment/applicationDCMdichloromethaneDESdietetion limitDMDyr matterDMDirgenzeDARDiageable foliar residueDIdetection limitDMDry matterDMSODisologeable foliar carbonddaDesignated national authoritydnaDesignated national authoritydnaDesignated national systemDCDissolved oxygenDOCDissolved organic carbondpiDays pot inoculationDTso, cakeCalculated half lifeDTso, cakeReference half lifeDTso, cakeReference half lifeDTso, cakeDiraker quality guidelines $\varepsilon$ Decadic molar extinction coefficient $\varepsilon$ Eccadic molar extinction coefficient $\varepsilon$ Decadic molar extinction coefficient $\varepsilon$ Decadic molar extinction coefficient $\varepsilon$ Eccadic molar extinction coefficient $\varepsilon$ Electiro concentration that produces x% of effectECDElectron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CNS                   | Central nervous system                                                        |
| CPKCreatinine phosphataseCPPCyclophosphamidecvCoefficient of variationCvCeiling valueCXLCodex Maximum Resideu Limit (Codex MRL)ddaydDiameter of MNDCell diameterDApplied dosageDAMCDays after the maximum concentrationDAPDays after the maximum concentrationDAPDays after the maximum concentrationDAPDays after treatment/applicationDCMdichloromethaneDESdiethylstiboestrolDFRDislogeable foliar residueDIdeischarged.1.detection limitDMSODimethylsulfoxideDNADeoxiribonuclei aciddnaDesignated national authoritydnsUnscheduled DNA-synthesisDODissolved oxygenDCCDissolved oxygenDCDDissolved organic carbondpiDays pot inoculationDFS0, erfReference half lifeDTs0, erfReference half life <t< td=""><td>COD</td><td>Chemical oxygen demand</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | COD                   | Chemical oxygen demand                                                        |
| CPPCyclophosphamide $cv$ Coefficient of variation $Cv$ Ceiling valueCXLCodex Maximum Resideu Limit (Codex MRL)ddaydDiameter of MNDCell diameterDApplied dosageDAMCDays after the maximum concentrationDAPDays after plantingDATDay after plantingDATDay after treatment/applicationDCMdichloromethaneDESdiethylstilboestrolDFRDislogeable foliar residueDIdeischarged.1.detection limitDMSODimethylsulfoxideDNADeoxiribonuclei aciddnaDesignated national authoritydnaDesignated national systemDTDissolved oxygenDCCDissolved oxganc carbondpiDays pot incoulation systemDTDisappearance timeDTs0, cakeCalculated half lifeDTs0, cakeCalculated for 90 per cent dissipation (define method of estimation)DTs0, cakeDrinking water quality guidelines $\epsilon$ Decadic molar extinction coefficient $EC_x$ Effective concentration that produces x% of effectEC50Median effective concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | СРК                   | Creatinine phosphatase                                                        |
| cvCoefficient of variation $Cv$ Ceiling valueCXLCodex Maximum Resideu Limit (Codex MRL)ddaydDiameter of MNDCell diameterDApplied dosageDAMCDays after the maximum concentrationDAPDays after plantingDATDay after treatment/applicationDCMdichloromethaneDESdiethylstilboestrolDFRDislogeable foliar residueDIdescharged.l.detection limitDMDry matterDMSODimethylsulfoxideDNADeoxiribonuclei aciddnaDesignated national authoritydnsUnscheduled DNA-synthesisDODissolved oxygenDOCDissolved organic carbondpiDays pot inoculationDTSt0Period required for 50 per cent dissipation (define method of estimation)DTst0, endeCalculated half lifeDTst0, endeReference half lifeDTst0Period required for 90 per cent dissipation (define method of estimation)dtrst0, endeDrinking water quality guidelines $\epsilon$ Decadic molar extinction coefficient $E_{x}$ Effective concentration that produces x% of effectECDElectron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | СРР                   | Cyclophosphamide                                                              |
| CvCeiling valueCXLCodex Maximum Resideu Limit (Codex MRL)ddaydDiameter of MNDCell diameterDApplied dosageDAMCDays after the maximum concentrationDAPDays after treatment/applicationDCMdichloromethaneDESdiethylstilboestrolDFRDislogeable foliar residueDIdeischarged.l.detection limitDMDry matterDMSODimethylsulfoxideDNADeoxiribonuclei aciddnaDesignated national authoritydnsUnscheduled DNA-synthesisDODissolved oxygenDOCDissolved oxygenDTDisappearance timeDTs0Period required for 50 per cent dissipation (define method of estimation)DTs0, cakeCalculated half lifeDTs0, cakeDecadic molar extinction coefficient $\mathcal{E}$ Decadic molar extinction coefficientECxEffective concentration that produces x% of effectEC50Hedian effective concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cv                    | Coefficient of variation                                                      |
| CXLCodex Maximum Resideu Limit (Codex MRL)ddaydDiameter of MNDCell diameterDApplied dosageDAMCDays after the maximum concentrationDAPDays after plantingDATDay after treatment/applicationDCMdichloromethaneDESdiethylstilboestrolDFRDislogeable foliar residueDIdeischarged.1.detection limitDMDry matterDMSODimethylsulfoxideDNADeoxiribonuclei aciddnaDesignated national authoritydnsUnscheduled DNA-synthesisDODissolved oxygenDOCDissolved organic carbondpiDays pot inoculationDRESDietary risk evaluation systemDTDisappearance timeDTs0, refReference half lifeDTs0, refReference half lifeDTs0Period required for 90 per cent dissipation (define method of estimation)dwDry weightDWQGDrinking water quality guidelines $\varepsilon$ Decadic molar extinction coefficientECs0Median effective concentration that produces x% of effectECs0Median effective concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cv                    | Ceiling value                                                                 |
| ddaydDiameter of MNDCell diameterDApplied dosageDAMCDays after the maximum concentrationDAPDays after plantingDATDay after treatment/applicationDCMdichloromethaneDESdiethylstilboestrolDFRDislogeable foliar residueDIdeischarged.1.detection limitDMDry matterDMSODimethylsulfoxideDNADeoxiribonuclei aciddnaDesignated national authoritydnsUnscheduled DNA-synthesisDODissolved oxygenDOCDissolved organic carbondpiDays pot inoculationDTs0Reference half lifeDTs0, ealeCalculated nation coefficient $\epsilon$ Decadic molar extinction coefficient $\epsilon$ Decadic molar extinction coefficientECMedian effective concentration that produces x% of effectEC5:0Median effective concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CXL                   | Codex Maximum Resideu Limit (Codex MRL)                                       |
| ddaydDiameter of MNDCell diameterDApplied dosageDAMCDays after the maximum concentrationDAPDays after plantingDATDay after treatment/applicationDCMdichloromethaneDESdiethylstilboestrolDFRDislogeable foliar residueDIdeischarged.1.detection limitDMADeoxiribonuclei aciddnaDesignated national authoritydnsUnscheduled DNA-synthesisDODissolved oxygenDOCDissolved organic carbondpiDays pot inoculationDTsoDeitary risk evaluation systemDTDisappearance timeDTso, endeCalculated half lifeDTso, endeCalculated half lifeDTso, endeCalculated half lifeDTso, endeCalculated nation coefficient $\epsilon$ Decadic molar extinction coefficientECEffective concentration that produces x% of effectECMedian effective concentrationECElectron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                                                                               |
| dDrameter of MNDCell diameterDApplied dosageDAMCDays after the maximum concentrationDAPDays after treatment/applicationDCMdichloromethaneDESdiethylstilboestrolDFRDislogeable foliar residueDIdeischarged.l.detection limitDMDry matterDMSODimethylsulfoxideDNADeoxiribonuclei aciddnaDesignated national authoritydnsUnscheduled DNA-synthesisDODissolved ozygenDCCDissolved ozygenDCCDisappearance timeDTDisappearance timeDTDisappearance timeDT_s0, calcCalculated half lifeDT_90Period required for 90 per cent dissipation (define method of estimation)DWGGDrinking water quality guidelines $\epsilon$ Decadic molar extinction coefficient $EC_x$ Effective concentration that produces x% of effectEC_50Median effective concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d                     | day                                                                           |
| DCell diameterDApplied dosageDAMCDays after the maximum concentrationDAPDays after the maximum concentrationDAPDays after the maximum concentrationDATDay after treatment/applicationDCMdichloromethaneDESdiethylstilboestrolDFRDislogeable foliar residueDIdeischarged.l.detection limitDMSODimethylsulfoxideDNADeoxiribonuclei aciddnaDesignated national authoritydnsUnscheduled DNA-synthesisDODissolved oxygenDOCDissolved oxygenDTDisappearance timeDT_s0Period required for 50 per cent dissipation (define method of estimation)DTs0, refReference half lifeDT_s0, ealcCalculated half lifeDT_s0, ealcPeriod required for 90 per cent dissipation (define method of estimation)dwDry weightDWQGDrinking water quality guidelines $\epsilon$ Decadic molar extinction coefficient $EC_x$ Effective concentration that produces x% of effectEC_30Median effective concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d                     | Diameter of MN                                                                |
| DApplied dosageDAMCDays after the maximum concentrationDAPDays after plantingDATDay after treatment/applicationDCMdichloromethaneDESdiethylstilboestrolDFRDislogeable foliar residueDIdeischarged.1.detection limitDMAODry matterDMSODimethylsulfoxideDNADeoxiribonuclei aciddnaDesignated national authoritydnsUnscheduled DNA-synthesisDODissolved oxygenDOCDissolved organic carbondpiDays pot inoculationDRESDietary risk evaluation systemDTDisappearance timeDT <sub>50</sub> . calcCalculated half lifeDT <sub>50</sub> . Period required for 50 per cent dissipation (define method of estimation)DT <sub>50</sub> . ealcCalculated half lifeDT <sub>50</sub> . Period required for 90 per cent dissipation (define method of estimation)dwDry weightDWQGDrinking water quality guidelines $\epsilon$ Decadic molar extinction coefficientECxEffective concentration that produces x% of effectEC50Median effective coreECDElectron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D                     | Cell diameter                                                                 |
| DAMCDays after the maximum concentrationDAPDays after plantingDATDay after treatment/applicationDCMdichloromethaneDESdiethylstilboestrolDFRDislogeable foliar residueDIdeischarged.l.detection limitDMDry matterDMSODimethylsulfoxideDNADeoxiribonuclei aciddnaDesignated national authoritydnsUnscheduled DNA-synthesisDODissolved oxygenDOCDissolved organic carbondpiDays pot inoculationDRESDietary risk evaluation systemDTDisappearance timeDT_{50, calcCalculated half lifeDT_{50, calcCalculated half lifeDT_{50, calcDecadic molar extinction coefficient $\epsilon$ Decadic molar extinction coefficient $\epsilon$ Decadic molar extinction coefficient $EC_x$ Effective concentration that produces x% of effectECElectron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D                     | Applied dosage                                                                |
| DAPDays after plantingDATDay after treatment/applicationDCMdichloromethaneDESdiethylstilboestrolDFRDislogeable foliar residueDIdeischarged.1.detection limitDMDry matterDMSODimethylsulfoxideDNADeoxiribonuclei aciddnaDesignated national authoritydnsUnscheduled DNA-synthesisDODissolved organic carbondpiDays pot inoculationDRESDietry risk evaluation systemDTDisappearance timeDTs0, calcCalculated half lifeDTs0, refReference half lifeDTs0, refReference half lifeDTs0, refPeriod required for 90 per cent dissipation (define method of estimation)dwDry weightDWQGDrinking water quality guidelines $\epsilon$ Decadic molar extinction coefficientECxEffective concentration that produces x% of effectECDElectron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DAMC                  | Days after the maximum concentration                                          |
| DATDay after treatment/applicationDCMdichloromethaneDESdiethylstilboestrolDFRDislogeable foliar residueDIdeischarged.l.detection limitDMDry matterDMSODimethylsulfoxideDNADeoxiribonuclei aciddnaDesignated national authoritydnsUnscheduled DNA-synthesisDODissolved oxygenDOCDissolved organic carbondpiDays pot inoculationdpiDays pot inoculationDTDisappearance timeDT_50Period required for 50 per cent dissipation (define method of estimation)DT_50, calcCalculated half lifeDT_50, calcCalculated half lifeDT_50, ealcCalculated half lifeDT_50, calcCalculated null y guidelines $\epsilon$ Decadic molar extinction coefficient $\epsilon$ Decadic molar extinction that produces x% of effect $\epsilon_{50}$ Median effective concentrationECDElectron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DAP                   | Days after planting                                                           |
| DCMdichloromethaneDESdiethylstilboestrolDFRDislogeable foliar residueDIdeischarged.l.detection limitDMDry matterDMSODimethylsulfoxideDNADeoxiribonuclei aciddnaDesignated national authoritydnsUnscheduled DNA-synthesisDODissolved oxygenDOCDissolved organic carbondpiDays pot inoculationDRESDietary risk evaluation systemDTDisappearance timeDT_50, calcCalculated half lifeDT_50, refReference half lifeDT_50, refReference half lifeDT_50Period required for 90 per cent dissipation (define method of estimation)dwDry weightDWQGDrinking water quality guidelines $\epsilon$ Decadic molar extinction coefficientECxEffective concentration that produces x% of effectEC50Hedian effective concentrationECDElectron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DAT                   | Day after treatment/application                                               |
| DESdiethylstilboestrolDFRDislogeable foliar residueDIdeischarged.1.detection limitDMDry matterDMSODimethylsulfoxideDNADeoxiribonuclei aciddnaDesignated national authoritydnsUnscheduled DNA-synthesisDODissolved oxygenDOCDissolved organic carbondpiDays pot inoculationDRESDietary risk evaluation systemDTDisappearance timeDT_{50}Period required for 50 per cent dissipation (define method of estimation)DT_{50, calc}Calculated half lifeDT_{50, calc}Calculated nation oper cent dissipation (define method of estimation)dwDry weightDWQGDrinking water quality guidelines $\epsilon$ Decadic molar extinction coefficientECxEffective concentration that produces x% of effectECs0Median effective concentrationECDElectron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DCM                   | dichloromethane                                                               |
| DFRDislogeable foliar residueDIdeischarged.l.detection limitDMDry matterDMSODimethylsulfoxideDNADeoxiribonuclei aciddnaDesignated national authoritydnsUnscheduled DNA-synthesisDODissolved oxygenDOCDissolved organic carbondpiDays pot inoculationDRESDietary risk evaluation systemDTDisappearance timeDT_{50, calc}Calculated half lifeDT_{50, refReference half lifeDT_{90}Period required for 90 per cent dissipation (define method of estimation)dwDry weightDWQGDrinking water quality guidelines $\epsilon$ Decadic molar extinction coefficientEC_xEffective concentration that produces x% of effectECDElectron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DES                   | diethylstilboestrol                                                           |
| DIdeischarged.l.detection limitDMDry matterDMSODimethylsulfoxideDNADeoxiribonuclei aciddnaDesignated national authoritydnsUnscheduled DNA-synthesisDODissolved oxygenDOCDissolved organic carbondpiDays pot inoculationDRESDietary risk evaluation systemDTDisappearance timeDT_{50, calc}Calculated half lifeDT_{50, refReference half lifeDT_{90}Period required for 90 per cent dissipation (define method of estimation)dwDry weightDWQGDrinking water quality guidelines $\epsilon$ Decadic molar extinction coefficientEC_xEffective concentration that produces x% of effectECDElectron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DFR                   | Dislogeable foliar residue                                                    |
| d.l.detection limitDMDry matterDMSODimethylsulfoxideDNADeoxiribonuclei aciddnaDesignated national authoritydnsUnscheduled DNA-synthesisDODissolved oxygenDOCDissolved organic carbondpiDays pot inoculationDRESDietary risk evaluation systemDTDisappearance timeDT_50Period required for 50 per cent dissipation (define method of estimation)DT_50, calcCalculated half lifeDT_90Period required for 90 per cent dissipation (define method of estimation)dwDry weightDWQGDrinking water quality guidelines $\epsilon$ Decadic molar extinction coefficientEC_xEffective concentration that produces x% of effectECDElectron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DI                    | deischarge                                                                    |
| DMDry matterDMSODimethylsulfoxideDNADeoxiribonuclei aciddnaDesignated national authoritydnsUnscheduled DNA-synthesisDODissolved oxygenDOCDissolved organic carbondpiDays pot inoculationDRESDietary risk evaluation systemDTDisappearance timeDT_50Period required for 50 per cent dissipation (define method of estimation)DT_50, calcCalculated half lifeDT_90Period required for 90 per cent dissipation (define method of estimation)dwDry weightDWQGDrinking water quality guidelines $\epsilon$ Decadic molar extinction coefficientECxEffective concentration that produces x% of effectECDElectron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d.1.                  | detection limit                                                               |
| DMSODimethylsulfoxideDNADeoxiribonuclei aciddnaDesignated national authoritydnsUnscheduled DNA-synthesisDODissolved oxygenDOCDissolved organic carbondpiDays pot inoculationDRESDietary risk evaluation systemDTDisappearance timeDT_{50}Period required for 50 per cent dissipation (define method of estimation)DT_{50, refReference half lifeDT_{90}Period required for 90 per cent dissipation (define method of estimation)dwDry weightDWQGDrinking water quality guidelines $\epsilon$ Decadic molar extinction coefficient $EC_x$ Effective concentration that produces x% of effectECDElectron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DM                    | Dry matter                                                                    |
| DNADeoxiribonuclei aciddnaDesignated national authoritydnsUnscheduled DNA-synthesisDODissolved oxygenDOCDissolved organic carbondpiDays pot inoculationDRESDietary risk evaluation systemDTDisappearance timeDT_50Period required for 50 per cent dissipation (define method of estimation)DT_50, calcCalculated half lifeDT_90Period required for 90 per cent dissipation (define method of estimation)dwDry weightDWQGDrinking water quality guidelines $\epsilon$ Decadic molar extinction coefficient $EC_x$ Effective concentration that produces x% of effectECDElectron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DMSO                  | Dimethylsulfoxide                                                             |
| dnaDesignated national authoritydnsUnscheduled DNA-synthesisDODissolved oxygenDOCDissolved organic carbondpiDays pot inoculationDRESDietary risk evaluation systemDTDisappearance timeDT_50Period required for 50 per cent dissipation (define method of estimation)DT_50, calcCalculated half lifeDT_90Period required for 90 per cent dissipation (define method of estimation)dwDry weightDWQGDrinking water quality guidelines $\epsilon$ Decadic molar extinction coefficientEC_xEffective concentration that produces x% of effectECDElectron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DNA                   | Deoxiribonuclei acid                                                          |
| dnsUnscheduled DNA-synthesisDODissolved oxygenDOCDissolved organic carbondpiDays pot inoculationDRESDietary risk evaluation systemDTDisappearance timeDT_{50}Period required for 50 per cent dissipation (define method of estimation)DT_{50, calc}Calculated half lifeDT_{90}Period required for 90 per cent dissipation (define method of estimation)dwDry weightDWQGDrinking water quality guidelines $\epsilon$ Decadic molar extinction coefficient $EC_x$ Effective concentration that produces x% of effectEC50Median effective concentrationECDElectron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | dna                   | Designated national authority                                                 |
| DODissolved oxygenDOCDissolved organic carbondpiDays pot inoculationDRESDietary risk evaluation systemDTDisappearance timeDT_{50}Period required for 50 per cent dissipation (define method of estimation)DT_{50, calc}Calculated half lifeDT_{50, ref}Reference half lifeDT_{90}Period required for 90 per cent dissipation (define method of estimation)dwDry weightDWQGDrinking water quality guidelines $\epsilon$ Decadic molar extinction coefficientEC_xEffective concentration that produces x% of effectEC_50Median effective concentrationECDElectron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | dns                   | Unscheduled DNA-synthesis                                                     |
| DOCDissolved organic carbondpiDays pot inoculationDRESDietary risk evaluation systemDTDisappearance time $DT_{50}$ Period required for 50 per cent dissipation (define method of estimation) $DT_{50, calc}$ Calculated half life $DT_{50, ref}$ Reference half life $DT_{90}$ Period required for 90 per cent dissipation (define method of estimation)dwDry weightDWQGDrinking water quality guidelines $\epsilon$ Decadic molar extinction coefficient $EC_x$ Effective concentration that produces x% of effect $EC_{50}$ Median effective concentrationECDElectron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DO                    | Dissolved oxygen                                                              |
| dpiDays pot inoculationDRESDietary risk evaluation systemDTDisappearance time $DT_{50}$ Period required for 50 per cent dissipation (define method of estimation) $DT_{50, calc}$ Calculated half life $DT_{50, ref}$ Reference half life $DT_{90}$ Period required for 90 per cent dissipation (define method of estimation) $dw$ Dry weight $DWQG$ Drinking water quality guidelines $\epsilon$ Decadic molar extinction coefficient $EC_x$ Effective concentration that produces x% of effect $EC_{50}$ Median effective concentrationECDElectron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DOC                   | Dissolved organic carbon                                                      |
| DRESDietary risk evaluation systemDTDisappearance time $DT_{50}$ Period required for 50 per cent dissipation (define method of estimation) $DT_{50, calc}$ Calculated half life $DT_{50, ref}$ Reference half life $DT_{90}$ Period required for 90 per cent dissipation (define method of estimation) $dw$ Dry weight $DWQG$ Drinking water quality guidelines $\varepsilon$ Decadic molar extinction coefficient $EC_x$ Effective concentration that produces x% of effect $EC_{50}$ Median effective concentrationECDElectron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dpi                   | Days pot inoculation                                                          |
| DTDisappearance time $DT_{50}$ Period required for 50 per cent dissipation (define method of estimation) $DT_{50, calc}$ Calculated half life $DT_{50, ref}$ Reference half life $DT_{90}$ Period required for 90 per cent dissipation (define method of estimation) $dw$ Dry weight $DWQG$ Drinking water quality guidelines $\varepsilon$ Decadic molar extinction coefficient $EC_x$ Effective concentration that produces x% of effect $EC_{50}$ Median effective concentration $ECD$ Electron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DRES                  | Dietary risk evaluation system                                                |
| $DT_{50}$ Period required for 50 per cent dissipation (define method of estimation) $DT_{50, calc}$ Calculated half life $DT_{50, ref}$ Reference half life $DT_{90}$ Period required for 90 per cent dissipation (define method of estimation) $dw$ Dry weight $DWQG$ Drinking water quality guidelines $\varepsilon$ Decadic molar extinction coefficient $EC_x$ Effective concentration that produces x% of effect $EC_{50}$ Median effective concentrationECDElectron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DT                    | Disappearance time                                                            |
| D150, calcCalculated half life $DT_{50, ref}$ Reference half life $DT_{90}$ Period required for 90 per cent dissipation (define method of estimation)dwDry weightDWQGDrinking water quality guidelines $\epsilon$ Decadic molar extinction coefficient $EC_x$ Effective concentration that produces x% of effect $EC_{50}$ Median effective concentrationECDElectron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D1 <sub>50</sub>      | Period required for 50 per cent dissipation (define method of estimation)     |
| D150, refReference half life $DT_{90}$ Period required for 90 per cent dissipation (define method of estimation)dwDry weightDWQGDrinking water quality guidelines $\epsilon$ Decadic molar extinction coefficient $EC_x$ Effective concentration that produces x% of effect $EC_{50}$ Median effective concentrationECDElectron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DI 50, calc           | Calculated half life                                                          |
| D190Period required for 90 per cent dissipation (define method of estimation)dwDry weightDWQGDrinking water quality guidelines $\epsilon$ Decadic molar extinction coefficientECxEffective concentration that produces x% of effectEC50Median effective concentrationECDElectron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DI <sub>50, ref</sub> | Reference half life                                                           |
| awDry weightDWQGDrinking water quality guidelines $\epsilon$ Decadic molar extinction coefficient $EC_x$ Effective concentration that produces x% of effect $EC_{50}$ Median effective concentrationECDElectron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D1 <sub>90</sub>      | Period required for 90 per cent dissipation (define method of estimation)     |
| $\varepsilon$ Decadic molar extinction coefficient $EC_x$ Effective concentration that produces x% of effect $EC_{50}$ Median effective concentration $ECD$ Electron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | Dry weight<br>Drinking water quality guidalings                               |
| $\epsilon$ Decadic molar extinction coefficient $EC_x$ Effective concentration that produces x% of effect $EC_{50}$ Median effective concentrationECDElectron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DwQG                  | Drinking water quanty guidelines                                              |
| ECc_xEffective concentration that produces x% of effectEC_50Median effective concentrationECDElectron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ç                     | Decadic molar extinction coefficient                                          |
| ECxEncourse concentrationEC50Median effective concentrationECDElectron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EC.                   | Effective concentration that produces $x\%$ of effect                         |
| ECD Electron capture detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $EC_{50}$             | Median effective concentration                                                |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ECD                   | Electron capture detector                                                     |

| ECU<br>$ED_{50}$<br>EDI<br>ELISA<br>e-mail<br>EMDI<br>EPMA<br>ETE<br>Eq<br>ERC<br>ERL | European currency unit<br>Median effective dose<br>Estimated daily intake<br>Enzyme linked immunosorbent assay<br>Electronic mail<br>Estimated maximum daily intake<br>Electron probe micro analysis<br>Estimated theoretical exposure<br>Equivalent<br>Environmentally relevant concentration<br>Extraneous residue limit |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| f                                                                                     | fomala                                                                                                                                                                                                                                                                                                                     |
| F                                                                                     | field                                                                                                                                                                                                                                                                                                                      |
| ٥F                                                                                    | Degree Fahrenheit                                                                                                                                                                                                                                                                                                          |
| F <sub>0</sub>                                                                        | Parental generation                                                                                                                                                                                                                                                                                                        |
| F <sub>1</sub>                                                                        | Filial generation, first                                                                                                                                                                                                                                                                                                   |
| $F_2$                                                                                 | Filial generation, second                                                                                                                                                                                                                                                                                                  |
| FC                                                                                    | Field capacity                                                                                                                                                                                                                                                                                                             |
| f <sub>drift</sub>                                                                    | Drift factor                                                                                                                                                                                                                                                                                                               |
| FIA                                                                                   | Fluorescence immuno assay                                                                                                                                                                                                                                                                                                  |
| FID                                                                                   | Flame ionization detector                                                                                                                                                                                                                                                                                                  |
| FOB                                                                                   | Functional observation battery                                                                                                                                                                                                                                                                                             |
| fp                                                                                    | Freezing point                                                                                                                                                                                                                                                                                                             |
| FPD                                                                                   | Flame photometric detector                                                                                                                                                                                                                                                                                                 |
| FPLC                                                                                  | Fast protein liquid chromatography                                                                                                                                                                                                                                                                                         |
| g                                                                                     | Gram                                                                                                                                                                                                                                                                                                                       |
| Ğ                                                                                     | Glasshouse                                                                                                                                                                                                                                                                                                                 |
| GAP                                                                                   | Good agricultural practice                                                                                                                                                                                                                                                                                                 |
| GC                                                                                    | Gas chromatography                                                                                                                                                                                                                                                                                                         |
| GC-EC                                                                                 | Gas chromatography with electron capture detector                                                                                                                                                                                                                                                                          |
| GC-FID                                                                                | Gas chromatography with flame ionization detector                                                                                                                                                                                                                                                                          |
| GC-MS                                                                                 | Gas chromatography-mass spectrometry                                                                                                                                                                                                                                                                                       |
| GC-MSD                                                                                | Gas chromatography with mass-selective detection                                                                                                                                                                                                                                                                           |
| GEP                                                                                   | Good experimental practice                                                                                                                                                                                                                                                                                                 |
| GFP                                                                                   | Good field practice                                                                                                                                                                                                                                                                                                        |
| GGT                                                                                   | Gamma-glutamyl transferase                                                                                                                                                                                                                                                                                                 |
| G.I.                                                                                  | Gastro intestinal                                                                                                                                                                                                                                                                                                          |
| GIT                                                                                   | Gastro intestinal tract                                                                                                                                                                                                                                                                                                    |
| GLC                                                                                   | Gas liquid chromatography                                                                                                                                                                                                                                                                                                  |
| GLP                                                                                   | Good laboratory practice                                                                                                                                                                                                                                                                                                   |
| GM                                                                                    | Geometric mean                                                                                                                                                                                                                                                                                                             |
| GMM                                                                                   | Consticulty modified micro-organism                                                                                                                                                                                                                                                                                        |
| GMU                                                                                   | Col normastion abromatography                                                                                                                                                                                                                                                                                              |
| CDDD                                                                                  | Good plant protection program                                                                                                                                                                                                                                                                                              |
| GPS                                                                                   | Global positionen system                                                                                                                                                                                                                                                                                                   |
| GR                                                                                    | Growth reduction rate                                                                                                                                                                                                                                                                                                      |
| GS                                                                                    | Growth stage                                                                                                                                                                                                                                                                                                               |
| GSH                                                                                   | glutathion                                                                                                                                                                                                                                                                                                                 |
| GST-P                                                                                 | Glutathione-S-Transferase P                                                                                                                                                                                                                                                                                                |
| GV                                                                                    | granulosevirus                                                                                                                                                                                                                                                                                                             |
| лн                                                                                    | Molar heat of vaporisation                                                                                                                                                                                                                                                                                                 |
| H                                                                                     | Henry's Law constant (calculated as a unitless value) (see also $K$ )                                                                                                                                                                                                                                                      |
| h/hr                                                                                  | Hour(s)                                                                                                                                                                                                                                                                                                                    |
|                                                                                       |                                                                                                                                                                                                                                                                                                                            |

|    | · · ·   |
|----|---------|
| ha | Hectare |

| Hb | Haemoglobin |
|----|-------------|
|----|-------------|

| HCG<br>Hct<br>HDPE<br>HDT<br>HEED<br>HID<br>hl<br>HPAEC<br>HPLC<br>HPLC-MS<br>HPPLC<br>HPTLC<br>HRGC<br>H <sub>S</sub><br>Ht | Human chorionic gonadotropin<br>Haematocrit<br>High density polyethylene<br>Highest dose tested<br>High energy electron diffraction<br>Helium ionization detector<br>Hectolitre<br>High performance anion exchange chromatography<br>High pressure liquid chromatography or high performance liquid chromatography<br>High pressure liquid chromatography – mass spectrometry<br>High pressure planar liquid chromatography<br>High performance thin layer chromatography<br>High resolution gas chromatography<br>Shannon-Weaver index<br>Hematocrit |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ι                                                                                                                            | indoor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| I <sub>50</sub>                                                                                                              | Inhibitory dose 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $IC_{50}$                                                                                                                    | Median immobilisation concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ICM                                                                                                                          | Integrated crop management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ID                                                                                                                           | Ionization detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| i.d.                                                                                                                         | Internal diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| IEDI                                                                                                                         | International estimated daily intake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| IGR                                                                                                                          | Insect growth regulator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| inh                                                                                                                          | Inhalation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| in                                                                                                                           | intraperitoneal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| i.p.                                                                                                                         | intraperitoneal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| IPM                                                                                                                          | Integrated pest management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| IR                                                                                                                           | infrared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| IS                                                                                                                           | Loamy sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ISBN                                                                                                                         | International standard book number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ISSN                                                                                                                         | International standard serial number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| iv                                                                                                                           | intravenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| IVF                                                                                                                          | In vitro fertilisation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| le.                                                                                                                          | Vilo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| K                                                                                                                            | Kilo<br>Kelvin or Henry's I aw Constant (in atmospheres per cubic meter per mole)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| K ,                                                                                                                          | Adsorption constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| K <sub>a</sub>                                                                                                               | Distribution coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| K <sub>des</sub>                                                                                                             | Apparent desorption coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| K <sub>oc</sub>                                                                                                              | Organic carbon adsorption coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| K <sub>om</sub>                                                                                                              | Organic matter adsorption coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| K <sub>ow</sub>                                                                                                              | n-octanol water partition coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| kg                                                                                                                           | kilogram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| l                                                                                                                            | litre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                              | Loan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| LAN                                                                                                                          | Local area network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LASLK                                                                                                                        | Loosely bound capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LDC                                                                                                                          | Lethal concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| LC                                                                                                                           | Liquid chromatography                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LC <sub>50</sub>                                                                                                             | Lethal concentration, median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LC <sub>Lo</sub>                                                                                                             | Lethal concentration low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LCA                                                                                                                          | Life cycle analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LC-MS                                                                                                                        | Liquid chromatography – mass spectrometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| LC-MS-MS                                                                                                                     | Liquid chromatography with tandem mass spectrometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $LD_{50}$                                                                                                                    | Lethal dose, median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| LD <sub>L0</sub><br>LDH<br>LOAEC<br>LOAEL<br>LOD<br>LOEC<br>LOEL<br>log<br>LOQ<br>LPLC<br>LSC<br>LSD<br>LSS<br>LT | Lethal dose low<br>Lactate dehydrogenase<br>Lowest observable adverse affect concentration<br>Lowest observable adverse effect level<br>Limit of determination<br>Lowest observable effect concentration<br>Lowest observable effect level<br>logarithm<br>Limit of quantitation<br>Low pressure liquid chromatography<br>Liquid scintillation counting or counter<br>Least squared denominator multiple range test<br>Liquid scintillation spectrometry<br>Lethal threshold |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| m                                                                                                                 | Metre / male                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| M                                                                                                                 | Molar                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MAT                                                                                                               | Month after treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MC                                                                                                                | Moisturee content                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MCH                                                                                                               | Mean corpuscular haemoglobin                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MCHC                                                                                                              | Mean corpuscular haemoglobin concentration                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| uCi                                                                                                               | micro curios                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MCV                                                                                                               | Mean corpuscular volume                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MDL                                                                                                               | Method detection limit                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| meq                                                                                                               | Miliequivalents                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MFO                                                                                                               | Mixed function oxidase                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| μg                                                                                                                | microgram                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| mg                                                                                                                | milligram                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MHC                                                                                                               | Moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| min                                                                                                               | minute                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| μl                                                                                                                | microlitre                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ml                                                                                                                | millilitre                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MLD                                                                                                               | Method detection limit                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MLT                                                                                                               | Median lethal time                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| mm                                                                                                                | Millimetre                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| μm                                                                                                                | Micrometer                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MMAD                                                                                                              | Mass median aerodynamic diametre                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MNPCE                                                                                                             | Micronucleated polychromatic erythrocytes                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| mo                                                                                                                | Months                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mol                                                                                                               | Mole(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MOS                                                                                                               | Margin of safety                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| m.p.                                                                                                              | melting point                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MPC                                                                                                               | Maximum plasma concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MR                                                                                                                | Moderately resistant                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MRE                                                                                                               | Maximum residue expected                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                   | Massangar ribonualaja aaid                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| IIIKINA<br>MS                                                                                                     | Mess spectrometry                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MS                                                                                                                | Moderately suscentible                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MSDS                                                                                                              | Material safety data sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MTD                                                                                                               | Maximum tolerated dose                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MWC                                                                                                               | Maximum water holding capacity                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ν                                                                                                                 | Newton                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| n                                                                                                                 | Normal (definiting isomeric configuration) or number of observations                                                                                                                                                                                                                                                                                                                                                                                                         |

| n  | Normai (6 |
|----|-----------|
| n° | Number    |
|    |           |

- NA Not applicable
- NAEL No adverse effect level

| NCF                   | Normochromatic erythrocyte                             |
|-----------------------|--------------------------------------------------------|
| nd                    | Not determined                                         |
| nd                    | Not determined                                         |
| II.U.<br>NEDI         | Not detected                                           |
| NEDI                  | National estimated daily intake                        |
| NEL                   | No effect level                                        |
| NERL                  | No effect residue level                                |
| n.f.                  | Not found                                              |
| ng                    | Nanogram                                               |
| NNM                   | N-Nitrosomorpholine                                    |
| n.m.                  | Not measurable                                         |
| nm                    | Nanometre                                              |
| NMR                   | Nuclear magnetic resonance                             |
| NG                    | Nuclear grain                                          |
| NNG                   | Net nuclear grains                                     |
| no/No                 | Number                                                 |
| NOAEC                 | No observed adverse effect concentration               |
| NOAEL                 | No observed adverse effect level                       |
| NOFC                  | No observed effect concentration                       |
| NOED                  | No observed effect dose                                |
| NOED                  | No observed effect level                               |
| NOEL                  | No observed effect level                               |
| NOIS                  | Notice of intent to suspend                            |
| np                    | not performed                                          |
| NPD                   | Nitrogen-phosphorus detector or detection              |
| NPV                   | Nuclear polyhedrosis virus                             |
| NR                    | Not reported                                           |
| ns                    | Not sampled                                            |
| NTE                   | Neurotoxic target esterase                             |
| OC                    | Organic carbon content                                 |
| OCR                   | Ontical character recognition                          |
| ODP                   | Ozone-depleting potential                              |
|                       | Ozone depleting substances                             |
| OD3                   | Organia matter content                                 |
| O.M.                  |                                                        |
| OP                    | Opacity                                                |
| ор                    | Organophosphorous pesticide                            |
| р                     | para (indicating position in a chemical name)          |
| Ра                    | Pascal                                                 |
| PAD                   | Pulsed amperometric detection                          |
| 2-PAM                 | 2-prlidoxime                                           |
| PB                    | Phenobarbitone                                         |
| pc                    | Paper chromatography                                   |
| PC                    | Personal computer                                      |
| PCE                   | Polychromatic erythrocyte                              |
| PCV                   | Haematocrit (nacked corpuscular volume)                |
| DEC                   | Predicted anyironmental concentration                  |
| PEC                   | Predicted environmental concentration in sin           |
| PECA                  | Predicted environmental concentration in an            |
| PEC <sub>GW</sub>     | Livit 1 DEC                                            |
| PECi                  | Initial PEC                                            |
| PECs                  | Predicted environmental concentration in soil          |
| PEC <sub>s, act</sub> | Actual PEC <sub>s</sub>                                |
| PEC <sub>s, twa</sub> | Time-weighed average PEC <sub>s</sub>                  |
| PEC <sub>sw</sub>     | Predicted environmental concentration in surface water |
| PED                   | Plasma-emissions-detector                              |
| PEG                   | Polyethylene glycol                                    |
| pН                    | pH - value                                             |
| PHED                  | Pesticide handler's exposure data                      |
| PHI                   | Pre-harvest interval                                   |
| PIC                   | Prior informed consent                                 |

| Monograph | Volume I | Appendix 1 | 114 | Endosulfan | December 1999 |
|-----------|----------|------------|-----|------------|---------------|
|-----------|----------|------------|-----|------------|---------------|

| Pic<br>PIXE<br>pKa<br>PNEC<br>po<br>Pow<br>POP<br>ppb<br>PPE<br>ppm<br>ppp<br>pPP<br>ppq<br>ppt<br>PRL<br>PrT<br>PSP<br>PT<br>PTDI<br>PTT<br>PVDW | Phage inhibitory capacity<br>Proton induced X-ray emission<br>Negative logarithm (to the base 10) of the dissociation constant<br>Predicted no effect concentration<br>By mouth<br>Partition coefficient between n-octanol and water<br>Persistent organic pollutants<br>Parts per billion (10 <sup>-9</sup> )<br>Personal protective equipment<br>Parts per million (10 <sup>-6</sup> )<br>Plant protection product<br>Parts per quadrillion (10 <sup>-24</sup> )<br>Parts per trillion (10 <sup>-12</sup> )<br>Practical residue limit<br>Prothrombin residue time<br>phenosulfophthalein<br>Prothrombin time<br>Provisional tolerable daily intake<br>Partial thromboplastin time<br>Predicted value drinking water |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PVOH                                                                                                                                              | plyvinylalcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Q <sub>10</sub>                                                                                                                                   | Factor for increase of degradation rate with an increase of temperature of 10°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| QA                                                                                                                                                | Quality assurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| QSAR                                                                                                                                              | Quantitative structure-activity relationship                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| r                                                                                                                                                 | correlation coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| r <sup>2</sup>                                                                                                                                    | Coefficient of determination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| R                                                                                                                                                 | Ideal gas constant / resistant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RAC                                                                                                                                               | Raw agriculture commodity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RBC                                                                                                                                               | Red blood cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RED                                                                                                                                               | Redness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Reg.                                                                                                                                              | Registration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| REI                                                                                                                                               | Restrictes entry interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Rf                                                                                                                                                | Retardation factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| RfD                                                                                                                                               | Reference dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RH                                                                                                                                                | Relative humidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| RL <sub>50</sub>                                                                                                                                  | Median residual lifetime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| RNA                                                                                                                                               | Ribonucleic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| RP                                                                                                                                                | Reversed phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| rpm                                                                                                                                               | Rotations per minute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| rRNA                                                                                                                                              | Ribosomal ribonucleic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RPT                                                                                                                                               | Relative retention time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RSD                                                                                                                                               | Relative standard deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| S                                                                                                                                                 | susceptible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| s                                                                                                                                                 | second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SAC                                                                                                                                               | Strong adsorption capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SAP                                                                                                                                               | Serum alkaline phosphatase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SAR                                                                                                                                               | Structure/activity relationship                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SBLC                                                                                                                                              | Shallow bed liquid chromatography                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| sc                                                                                                                                                | subcutaneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| sc                                                                                                                                                | Sister chromatid exchange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SC                                                                                                                                                | Standard deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SD                                                                                                                                                | standard deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| se                                                                                                                                                | standard error of the mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SEM                                                                                                                                               | Standard error of the mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SEP                                                                                                                                               | Standard evaluation procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SF                                                                                                                                                | Safety factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SFC                                                                                                                                               | Supercritical fluid chromatography                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| ~ ~ ~               | ~                                                           |
|---------------------|-------------------------------------------------------------|
| SFC                 | Supercritical fluid extraction                              |
| SIMS                | Secondary ion mass spectroscopy                             |
| SL                  | Sandy loam                                                  |
| SOP                 | Standard operating procedures                               |
| sol                 | Species (only after a generic name)                         |
| sp                  | species (only area a generic name)                          |
| SPE                 | solid phase extraction                                      |
| SPF                 | Specific pathogen free                                      |
| spp                 | subspecies                                                  |
| sq                  | square                                                      |
| SSD                 | Sulphur specific detector                                   |
| SSMS                | Snark source mass spectrometry                              |
| STEL                | Short torm experience limit                                 |
| SIEL                | Short term exposure mint                                    |
| SIMK                | Supervised trials median residue                            |
| SW                  | Chemosis                                                    |
| t                   | Tonne (metric tone)                                         |
| t.                  | Time period                                                 |
| ι]<br>T             |                                                             |
| 1 <sub>3</sub>      | I m-hodotnyroxine                                           |
| $T_4$               | thyroxine                                                   |
| Т                   | Absolute temperature                                        |
| T <sub>ref</sub>    | Reference temperature                                       |
| $T_{calc}$          | Temperature for which DT <sub>50</sub> was calculated       |
| t <sub>1/2</sub>    | Terminal elimination half-life                              |
| T <sub>max</sub>    | Maximum time                                                |
| TADI                | Temporary acceptable daily intake                           |
| TBC                 | Tightly bound canacity                                      |
| TCD                 | Thermal conductivity datector                               |
| TC                  | Thermionic concentration low                                |
| $TC_{Lo}$           | Time to maximum plasma concentration of total radioactivity |
| TC <sub>max</sub>   |                                                             |
| TC <sub>max/2</sub> | Time to one-half maximum plasma                             |
| $TD_{Lo}$           | Toxic dose low                                              |
| TDR                 | Time domain reflectrometry                                  |
| TID                 | Thermoionic detector, alkali flame detector                 |
| TER                 | Toxicity exposure ration                                    |
| TERI                | Toxicity exposure ration for initial exposure               |
| TER <sub>ST</sub>   | Toxicity exposure ration following repeated exposure        |
| TERIT               | Toxicity exposure ration following chronic exposure         |
| TEP                 | Typical end-use product                                     |
| tort                | Tertiary (in a chemical name)                               |
| TCAL                | Technical grade of the estive ingradient                    |
| TOAL                | Technical grade of the active higher technic                |
| IGGE                | Temperature gradient gel electrophoresis                    |
| TIFF                | Tag image file format                                       |
| TLC                 | Thin layer chromatography                                   |
| Tlm                 | Median tolerance limit                                      |
| TLV                 | Threshold limit value                                       |
| TMDI                | Theoretical maximum daily intake                            |
| TMRC                | Theoretical maximum residue contribution                    |
| TMRL                | Temporary maximum residue limit                             |
| TOC                 | Total organic carbon                                        |
| Tremcard            | Transport emergency card                                    |
| tRNA                | Transfer ribonucleic acid                                   |
| TRP                 | Total radioactive residue                                   |
| TCU                 | Thuroid stimulation hormona                                 |
|                     | Time weighted everyge                                       |
| I W A               | rime weighted average                                       |
| UDP-GA              | Uridine diphosphate glucoronic acid                         |
| UDS                 | Unscheduled DNA synthesis                                   |
| UF                  | Uncertainty factor (safety factor)                          |
| ULV                 | Ultra low volume                                            |
|                     |                                                             |

| UV          | Ultraviolet                      |
|-------------|----------------------------------|
| vl.         | volume                           |
| V           | Volume of the water body         |
| VCR         | Vincristine                      |
| v/v         | Volume ratio (volume per volume) |
| WBC         | White blood cell                 |
| wk          | week                             |
| wt          | Weight                           |
| wt/vol      | Weight per volume                |
| W/V         | Weight per volume                |
| w/w         | Weight per Weight                |
| XRFA        | X-ray fluorescence analysis      |
| yr          | year                             |
| <           | Less than                        |
| <u>&lt;</u> | Less than or equal to            |
| >           | Greater than                     |
| <u>&gt;</u> | Greater than or equal to         |

## Part 2 Organisations and Publications

| BBA    | Federal Biological Research Centre for Agriculture and Forestry |  |  |  |
|--------|-----------------------------------------------------------------|--|--|--|
| CA     | Chemical Abstracts                                              |  |  |  |
| CAS    | Chemical Abstracts Service                                      |  |  |  |
| CIPAC  | Collaborative International Pesticides Analytical Council Ltd.  |  |  |  |
| D/DE   | Germany                                                         |  |  |  |
| E      | Spain                                                           |  |  |  |
| EC     | European Commission                                             |  |  |  |
| EEC    | European Economic Community                                     |  |  |  |
| ECCO   | European Commission Co-ordination                               |  |  |  |
| EINECS | European Inventory of Existing Commercial Chemical Substances   |  |  |  |
| EPA    | Environmental Protection Agency                                 |  |  |  |
| EPPO   | European and Mediterranean Plant Protection Organisation        |  |  |  |
| ES     | Spain                                                           |  |  |  |
| EU     | European Union                                                  |  |  |  |
| FAO    | Food and Agriculture Organisation of the UN                     |  |  |  |
| FR     | France                                                          |  |  |  |
| ISO    | International Organisation for Standardisation                  |  |  |  |
| I      | Italy                                                           |  |  |  |
| IUPAC  | International Union of Pure and Applied Chemistry               |  |  |  |
| SETAC  | Society of Environmental Toxicology and Chemistry               |  |  |  |
| OECD   | Organisation for Economic Co-operation and Development          |  |  |  |
| UK     | United Kingdom of Great Britain                                 |  |  |  |
| US     | United States                                                   |  |  |  |
| USA    | United States of America                                        |  |  |  |

## **APPENDIX 2**

## PREPARATION (FORMULATION) TYPES AND CODES

EC Emulsifiable concentrate

A liquid, homogenous preparation to be applied as an emulsion after dilution in water

| Proposed Classification and Lab                                                         | oelling                                                                         |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Active substance (ISO Common Name)                                                      | Endosulfan                                                                      |
| Function ( <i>e.g.</i> fungicide)                                                       | Insecticide                                                                     |
| Rapporteur Member State                                                                 | Spain                                                                           |
| dentity (Annex IIA, point 1)                                                            |                                                                                 |
| Chemical name (IUPAC)                                                                   | 6,7,8,9,10,10-hexachloro-1,5,5 <sup>a</sup> ,6,9,9 <sup>a</sup> -hexahydro-6,9- |
|                                                                                         | methano-2,4,3-benzo-dioxathiepin-3-oxide                                        |
| Chemical name (CA)                                                                      | 6,9-methano-2,4,3-benzodioxathiepin,6,7,8,9,10,10-                              |
|                                                                                         | hexachloro-1,5,5 <sup>a</sup> ,6,9,9 <sup>a</sup> -hexahydro-3-oxide            |
| CIPAC No                                                                                | 89                                                                              |
| CAS No                                                                                  | 115-29-7                                                                        |
| EEC No (EINECSor ELINCS)                                                                | 204-079-9                                                                       |
| FAO Specification (including year of publication)                                       | CP/228                                                                          |
| Minimum purity of the active substance as manufactured (g/kg)                           | 940 +/- 20 g / Kg (FAO)                                                         |
| Identity of relevant impurities (of toxicological,                                      |                                                                                 |
| environmental and/or other significance) in the active substance as manufactured (g/kg) | SEE ANNEX C                                                                     |
| Molecular formula                                                                       | C <sub>9</sub> H <sub>6</sub> Cl <sub>6</sub> O <sub>3</sub> S                  |
| Molecular mass                                                                          | 406.96 g/mol                                                                    |
| Structural formula                                                                      | CI                                                                              |
|                                                                                         |                                                                                 |

### Identity, Physical and Chemical Properties, Details of Uses. Fur Informatio Cha

| <b>Physical-chemical properties</b> (Annex IIA, point 2)                                                                 |                                                                              |  |  |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|
| Melting point (state purity if not purified)                                                                             | $\alpha$ - endosulfan: 109.2 °C                                              |  |  |
|                                                                                                                          | $\beta$ - endosulfan: 213.3 °C                                               |  |  |
| Boiling point (state purity if not purified)                                                                             | Not required                                                                 |  |  |
| Temperature of descomposition                                                                                            | Not required                                                                 |  |  |
| Appearence (state purity if not purified)                                                                                | Flskes with tendence to aglomeration, cream to tan                           |  |  |
|                                                                                                                          | aminly beige. Odour like sulphur dioxide.                                    |  |  |
| Relative density (state purity if not purified)                                                                          | 1.87 g / cm <sup>3</sup>                                                     |  |  |
| Surface tension                                                                                                          | <b>Not required.</b> Solubility < 1 mg / 1                                   |  |  |
| Vapour pressure (in Pa. State temperature)                                                                               | $\alpha$ - endosulfan: 1.05 x 10 <sup>-3</sup> Pa                            |  |  |
|                                                                                                                          | $\beta$ - endosulfan: 1.38 x 10 <sup>-4</sup> Pa                             |  |  |
| Henry's law constant (Pa m <sup>3</sup> mol <sup>-1</sup> )                                                              | $\alpha$ - endosulfan: 1.1 Pa x m <sup>3</sup> x mol <sup>-1</sup> at 20 °C. |  |  |
|                                                                                                                          | $\beta$ - endosulfan: 0.2 Pa x m <sup>3</sup> x mol <sup>-1</sup> at 20 °C.  |  |  |
| Solubility in water (g/l or mg/l state                                                                                   | $\alpha$ - endosulfan: 0.41 mg / l                                           |  |  |
| temperature)                                                                                                             | $\beta$ - endosulfan: 0.23 mg / 1                                            |  |  |
|                                                                                                                          | Thionex (mixture of isomers): 0.63 mg / 1                                    |  |  |
| Solubility in organic solvents (in all or mall                                                                           | No pH dependency observed<br>dichloromethane $> 200 \text{ g}/1$             |  |  |
| state temperature)                                                                                                       | atkul sector > 200 z /l                                                      |  |  |
|                                                                                                                          | ethyl acetate $> 200 \text{ g/l}$                                            |  |  |
|                                                                                                                          | ethanol (aprox) = 65 g / 1                                                   |  |  |
|                                                                                                                          | n - nexane = 24 g/1                                                          |  |  |
|                                                                                                                          | acetone = 1164  g/  1                                                        |  |  |
| Partition as afficient (log D ) (state mU and                                                                            | tordene $> 200 \text{ g/r}$                                                  |  |  |
| temperature)                                                                                                             | No pH dependence is observed.                                                |  |  |
| Hydrolityc stability ( $DT_{50}$ ) (state pH and temperature)                                                            | $\alpha$ - endosulfan T = 25°C                                               |  |  |
|                                                                                                                          | pH 7: 19 days                                                                |  |  |
|                                                                                                                          | pH : 0.26 days                                                               |  |  |
|                                                                                                                          | $\beta$ - Endosulfan T = 25°C<br>pH 5: > 200 days                            |  |  |
|                                                                                                                          | nH 7: 10 7 days                                                              |  |  |
|                                                                                                                          | pH : 0.17 days                                                               |  |  |
| Dissociation constant                                                                                                    | Not aplicable                                                                |  |  |
| UV/VIS absortion (max.) (if absortion $> 290$                                                                            | No significant absorvance above 290 nm.                                      |  |  |
| nm <u>state <math>\varepsilon</math> at wavelength</u> )<br>Photostability (DT <sub>50</sub> ) (aqueous, sunlight, state | Photolitically stable                                                        |  |  |
| pH)<br>Quantum yield of direct phototranformation in                                                                     | Photolitically stable                                                        |  |  |
| water at $\lambda > 290$ nm<br>Flammability                                                                              | Not capable of burning                                                       |  |  |
| Explosive properties                                                                                                     | Non-explosive                                                                |  |  |
|                                                                                                                          | -                                                                            |  |  |

| Monograph | Endpoints – Appendix 3 | 121 | Endosulfan | December 1999 |
|-----------|------------------------|-----|------------|---------------|
|-----------|------------------------|-----|------------|---------------|

#### Summary of intended uses

| CROP                          | F/G | FORM TYPE    | COUNTRY         | APPLICATION  |                 | APPLICATION RATE |               |             | PHI         | REMARKS |                                  |
|-------------------------------|-----|--------------|-----------------|--------------|-----------------|------------------|---------------|-------------|-------------|---------|----------------------------------|
|                               |     |              |                 | Method       | Growth stage    | Ν                | kg ai/hl      | Water l/ha  | kg ai/ha    |         |                                  |
| 1. Fruits                     |     |              |                 |              |                 |                  |               |             |             |         |                                  |
| (i) Citrus fruit              | F   | EC (350 g/l) | Southern Europe | Medium/High  | During fruiting | 1-2              | 0.035         | 3000        | 1.05        | 21      | Spraying interval : 14 – 21      |
|                               |     |              |                 | vol spray    |                 |                  |               |             |             |         |                                  |
| (ii) Hazel nuts               | F   | EC (350 g/l) | Southern Europe | High volume  | At any stage    | 2                | 0.08          | 1000        | 0.8         | 28      | Spraying interval : 14-21        |
|                               |     |              |                 | spray        |                 |                  |               |             |             |         |                                  |
| (iii) Pome fruit              | F   | EC (350 g/l) | Southern Europe | High volume  | During fruiting | 2                | 0.053 - 0.105 | 1000 - 1500 | max. 1.05   | 14      | Spraying interval : 14 – 21      |
|                               |     |              |                 | spray        |                 |                  |               |             |             |         |                                  |
| (iv) Stone fruit (peaches)    | F   | EC (350 g/l) | Southern Europe | High volume  | During fruiting | 3                | 0.053         | 1500        | 0.8         | 21      | Spraying interval : 14 – 21      |
|                               |     |              |                 | spray        |                 |                  |               |             |             |         |                                  |
| (v) Berries and small fruit   |     |              |                 |              |                 |                  |               |             |             |         |                                  |
| (a) Table and wine grapes     | F   | EC (350 g/l) | Southern Europe | Medium/High  | At any syage    | 2                | 0.053-0.105   | 500-1000    | max 1.05    | 28      | Spraying interval : 14 – 21 days |
|                               |     |              |                 | volume spray |                 |                  |               |             |             |         |                                  |
| 2. Vegetables                 |     |              |                 |              |                 |                  |               |             |             |         |                                  |
| (i) Root and tuber vegetables |     |              |                 |              |                 |                  |               |             |             |         |                                  |
| Sugar beet                    | F   | EC (350 g/l) | Southern Europe | High colume  | At any stage    | 2                | 0.125         | 400         | 0.50        | 25      | Spraying interval: 14 – 21 days  |
|                               |     |              |                 | spraying     |                 |                  |               |             |             |         |                                  |
| (iii) Fruiting vegetables     |     |              |                 |              |                 |                  |               |             |             |         |                                  |
| (a) Solanacea (Tomatoes)      | F   | EC (350 g/l) | Southern Europe | High volume  | At any stage    | 2                | 0.053 - 0.105 | 500 - 1000  | max. 0.53   | 3       | Spraying interval: 14 – 21 days  |
|                               |     |              |                 | spray        |                 |                  |               |             |             |         |                                  |
|                               | G   | EC (350 g/l) | Southern Europe | High volume  | At any stage    | 2                | 0.053         | 1500        | 0.8         | 3       | Spraying interval: 7 – 14 days   |
|                               |     |              |                 | spray        |                 |                  |               |             |             |         |                                  |
| (c) Cucurbits inedible peel   | F   | EC (350 g/l) | Southern Europe | High volume  | At any stage    | 3                | 0.053         | 600 - 1000  | 0.32 - 0.53 | 7       | Spraying interval: 7 – 14        |
|                               |     |              |                 | spray        |                 |                  |               |             |             |         |                                  |
|                               |     |              |                 |              |                 | 1                |               |             |             |         |                                  |
| 4. Oil seed                   |     |              |                 |              |                 |                  |               |             |             |         |                                  |

| Monograph | Endpoints – Appendix 3 | 122 | Endosulfan | December 1999 |
|-----------|------------------------|-----|------------|---------------|
|-----------|------------------------|-----|------------|---------------|

#### Summary of intended uses

| CROP        | F/G | FORM TYPE    | COUNTRY         | APPLICATION               |                                                    | APPLICATION RATE |          |            | PHI      | REMARKS |                                 |
|-------------|-----|--------------|-----------------|---------------------------|----------------------------------------------------|------------------|----------|------------|----------|---------|---------------------------------|
|             |     |              |                 | Method                    | Growth stage                                       | Ν                | kg ai/hl | Water l/ha | kg ai/ha |         |                                 |
| Cotton      | F   | EC (350 g/l) | Southern Europe | High volume<br>spray      | Last application:<br>When balls are<br>partly open | 3                | 0.105    | 800        | 0.84     | 15      | Spraying interval: 14-21        |
| 5. Potatoes | F   | EC (350 g/l) | Southern Europe | High and low volume spray | At any stage                                       | 2                | 0.088    | 600        | 0.53     | 14      | Spraying interval: 14 – 21 days |

IMPORTED CROPS

| Monograph | Endpoints – Appendix 3 | 123 | Endosulfan | December 1999 |
|-----------|------------------------|-----|------------|---------------|
|-----------|------------------------|-----|------------|---------------|

#### Summary of intended uses

| CROP         | F/G | FORM TYPE    | COUNTRY        | APPLICATION                      |                                                    |       | APPLICATION RATE |            |             | PHI | REMARKS                                                                                |
|--------------|-----|--------------|----------------|----------------------------------|----------------------------------------------------|-------|------------------|------------|-------------|-----|----------------------------------------------------------------------------------------|
|              |     |              |                | Method                           | Growth stage                                       | Ν     | kg ai/hl         | Water l/ha | kg ai/ha    |     |                                                                                        |
| Citrus fruit | F   | EC (350 g/l) | Imported crop  | High volume<br>spray             | During fruiting                                    | 1-2   | 0.035            | 3000       | max. 1.05   | 21  | Outside Europe, use in citrus is<br>registered in South Africa,<br>Brazil, U.S.A.      |
| Soybeans     | F   | EC (350 g/l) | Imported crops | High volume<br>spray             | At any stage                                       | 2     | 0.13 - 0.26      | 200 – 400  | 0.53        | 30  | Outside Europe, use is<br>registered in Brazil, Australia,<br>Argentina a.o. countries |
| Cotton       | F   | EC (350 g/l) | Imported crops | High volume<br>spray             | Last application:<br>When balls are<br>partly open | 1 - 3 | 0.105            | 800        | 0.84        | 15  | Outside Europe registrations<br>exist in Brazil, Columbia,<br>Equador a.o. countries.  |
| Tea          | F   | EC (350 g/l) | Imported crops | High volume<br>spray             | At any stage                                       | 3     | 0.126            | 350        | 0.44        | 7   | Amongst other use is registered<br>in India                                            |
| Coffee       | F   | EC (350 g/l) | Imported crops | High volume<br>spray             | At any stage                                       | 3     | 0.175 - 1.05     | 100 - 600  | 1.05        | 30  | Use is registered in Latin<br>american and African countries                           |
| Cacao        | F   | EC (350 g/l) | Imported crops | Medium to<br>low volume<br>spray | At any stage                                       | 3     | 0.21 – 0.875     | 40 - 120   | 0.25 - 0.35 | 28  |                                                                                        |
| Pineaples    | F   | EC (350 g/l) | Imported crops | Medium to<br>low volume<br>spray | At any stage                                       | 2     | 0.41 – 0.84      | 200 - 400  | 1.68        | 60  | Spraying interval 7–14 days                                                            |

(a) The EU and Codex classifications (both) should be used Remarks:

(b) Outdoor or field use, glasshouse application (G) or indoor application (I)

(c) e.g., biting and suckling insects, soil-borne insects, foliar fungi, weeds
(d) e.g., wettable powder (WP), emulsifiable concentrate (EC), granule (GR)

(e) GIFAP Codes - GIFAP technical Monograph No. 2, 1989

(f) All abbreviations used must be explained

(m) BBCH scale is used for growth stage identification

(g) Method, e.g., high-volume spraying, low-volume spraying, spreading, dusting, drench

(h) Kind, e.g., overall, broadcast, aerial spraying, row, individual plant, between the plants

(i) g/kg or g/l

(j) Growth stage at last treatment

(k) PHI - Pre-harvest Interval

(l) Remarks may include: Extent of use/economic importance/restrictions

(e.g., feeding/grazing/minimal intervals between applications)

## Classification and proposed labelling (Annex IIA, point 10)

| With regard to physical/chemical data  | None                                                  |
|----------------------------------------|-------------------------------------------------------|
| With regard to toxicological data      | T+ Very toxic                                         |
|                                        | R28 Very toxic if swallowed                           |
|                                        | R21 Hrmful in contact with skin                       |
|                                        | R26 Very toxic by inhalation                          |
| With regard to fate and behaviour data | N Dangerous for the environment                       |
|                                        |                                                       |
| With regard to ecotoxicological data   | R50/53 Highly toxic to aquatic organism, may cause    |
|                                        | long-term adverse effects in the aquatic environment. |

#### <u>Chapter 2:</u> Methods of Analysis

# Analytical methods for the active substance (Annex IIA, point 4.1)Technical as (principle of method)CIPAC 89/TC/M2/-(CIPAC hand book 1C, 2110-2113, 1985). GC8-TCD detection.Impurities in technical as (principle of method)GC8-TCD detection.Plant protection product (principle of method)CIPAC 89/TC/M2/-(CIPAC hand book 1C, 2110-2113, 1985). GC8-TCD detection.Plant protection product (principle of method)CIPAC 89/TC/M2/-(CIPAC hand book 1C, 2110-2113, 1985). GC8-TCD detection.

Analytical methods for residues (Annex IIA, point 4.2)

| Food/feed of plant origin (principle of method<br>and LOQ for methods for monitoring purposes)         | There are only methods for melons, vines and potatoes.<br>Capillary GC/ECD. LOQ = 0.01 mg / kg.<br>ILV required.<br>Methods to support other uses are required. |
|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Food/feed of animal <u>origin</u> (principle of method<br>and LOQ for methods for monitoring purposes) | Liver, kidney, blood of wistar rat. Capillary GC/ECD.<br>LOQ = 0.02 mg / Kg.<br>ILV required                                                                    |
| Soil (principle of method and LOQ)                                                                     | No acceptable method submitted. Data required.                                                                                                                  |
| Water (principle of method and LOQ)                                                                    | No acceptable method submitted or lacking validation data. Data required.                                                                                       |
| Air (principle of method and LOQ)                                                                      | Absortion in Tenax tubes. Eluted with ethyl acetate.<br>GC-ECD. LOQ = $0.5 \ \mu g \ / m^3$                                                                     |
| Body fluids and tissues (principle of method and LOQ)                                                  | To employ the same that for animal products is<br>proposed. <b>Data required for endosulfan and</b><br><b>endosulfan metabolites in fish.</b>                   |

125

#### **<u>Chapter 3:</u>** Impact on Human and Animal Health

#### Absortion, distribution, excretion and metabolism in mammals (Annex IIA, point 5.1)

| Rate and exent of absortion:                                         | More than 90% of an oral dose of endosulfan was<br>absorbed in rats, with maximum plasma concentrations<br>occurring after 3-8 hours in males an about 18 hours in<br>females.<br>After dermal exposition of endosulfan in male rats the<br>absorption of the doses into the skin was rapid and<br>substantial at all doses (73-89%)at 24 hours. In female<br>rats the dermal absorption was between 20-46% at 168<br>hours at all doses testes. |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Distribution:                                                        | After a oral administration of endosulfan the highest<br>tissues concentrations was found mainly in the kidneys,<br>and liver                                                                                                                                                                                                                                                                                                                    |
| Potential for accumulation:                                          | The endosulfan residues were below 0.1 ppm in all other examined tissues                                                                                                                                                                                                                                                                                                                                                                         |
| Rate and exent of excretion:                                         | The urinary and faecal elimination half-lives for male<br>and female rats were byphasic, with the earlier $t_{1/2}$ of<br>least than 14 h, and the latter $t_{1/2}$ ranging form 33 to<br>67.5 hours Excretion was relatively rapid and<br>essentially complete within the first 1-2 days. Urinary<br>elimination was greater in females (2-24%) and males<br>(11-13%). Faecal elimination was 65-82% in males and<br>60-72% in females          |
| <u>Metabolism in animals</u>                                         | Endosulfan is converted in the animal organism to the<br>following metabolites: endosulfan-sulphate,<br>endosulfan- diol, endosulfan-ether, endosulfan-<br>hydroxyether, and endosulfan-lactone- A number of<br>unidentified polar metabolites are probably the<br>conjugates of the metabolites.                                                                                                                                                |
| Toxicologicallysignificantcompounds(animals, plants and environment) | Parents, no data on plant metabolites.                                                                                                                                                                                                                                                                                                                                                                                                           |

#### Acute toxicity (Annex IIA, point 5.2)

Rat  $LD_{50}$  oral

Rat LD<sub>50</sub> dermal

Rat LC<sub>50</sub> inhalation

Skin irritation

Eye irritation

Skin sensitization (test method used and result)

| 5 | 500 mg/kg bw (/f)                |
|---|----------------------------------|
| C | 0.0126 mg/l air for 4 hours (/f) |
| 1 | Not available                    |
| ľ | Not available                    |
| F | Buehler Test. No sensitizer      |

10-22.7 mg/kg bw (f)

| Short term | toxicity | (Annex | IIA, | point 5. | 3) |  |
|------------|----------|--------|------|----------|----|--|
|------------|----------|--------|------|----------|----|--|

Target / critical effect

Lowest relevant oral NOAEL / NOEL

Lowest relevant dermal NOAEL / NOEL

Lowest relevant inhalation NOAEL / NOEL

| Neurological sings and lethality                |  |  |  |
|-------------------------------------------------|--|--|--|
| 2.3 mg/kg/day mouse (m/f)./ 2.3 mg/kg/day mouse |  |  |  |
| (m/f)                                           |  |  |  |
| Not available                                   |  |  |  |
|                                                 |  |  |  |

Genotoxicity (Annex IIA, point 5.4)

The overall weight of evidence from *in vitro* and *in vivo* studies is that endosulfan does not induce gene mutation. Nevertheless, although it appears to be non-clastogenic, more studies are required in order to give a definitive conclusion.

Long term toxicity and carcinogenicity (Annex IIA, point 5.5)

Target / critical effect

Lowest relevant NOAEL / NOEL

Carcinogenicity

| Kidney                                            |
|---------------------------------------------------|
| 0.6 mg/kgbw/day (104-weeks oral study in rats)    |
| Not carcinogenic effects in female mice and rats. |
| No valid conclusion could be drawn about          |
| carcinogenicity in male rats and mice.            |

#### **Reproductive toxicity** (Annex IIA, point 5.6)

Reproduction target / critical effect

Lowest relevant reproductive NOAEL / NOEL

Developmental target / critical effect

Lowest relevant developmental NOAEL/NOEL

| None identified                          |                           |
|------------------------------------------|---------------------------|
| 75 ppm ( 6 mg/kgbw/day) toxicity in rats | 2.generation reproduction |
| Fetotoxicity at maternally to            | xic doses                 |
| 2 mg/kg bw from developme                | ental toxicity in rats    |

#### Neurotoxicity / Delayed neurotoxicity (Annex IIA, point 5.7)

Endosulfan produce toxic effect due the CNS stimulation and the death may be due to direct depressant effect on some vital organ of the body.

#### Other toxicological studies (Annex IIA, point 5.8)

90-day, oral, dog. Thiodan Sulphate 90-day, oral, dog. Hoe 051329 90-day, oral, rat. Hoe 051329

Genotoxicity testing of metabolites

#### Additional studies (Annex IIA, point 5.8)

Immunotoxicity studies

Endocrine system

Medical data (Annex IIA, point 5.9)

| NOAEL: 0.75 mg/kg bw/day (m/f)          |  |
|-----------------------------------------|--|
| NOAEL: 9.1 (m) and 8.4 (f) mg/kg bw/day |  |
| NOAEL: 7.8 (m) and 8.0 (f) mg/kg bw/day |  |

The available information shows that endosulfan-diol is not genotoxic.

Immunotoxicity in certain special assays, not confirmed in sensitisation test or histologically. Some conflicting evidence of interaction with estrogen receptors in vitro, non in vivo

Lowest lethal dose 35 mg/kgbw (oral)

#### Summary (Annex IIA, point 5.10)

ADI

Systemic AOEL

Drinking water limit

| Value                 | Study                             | Safety<br>factor |
|-----------------------|-----------------------------------|------------------|
| 0.006 mg/kg<br>bw/day | 2-years toxicity<br>study in rats | 100              |
| 0.006<br>mg/kgbw/day  | 104-weeks toxicity in rats        | 100              |
| 0.018 mg/litre        |                                   |                  |

#### **Dermal absorption** (Annex IIIA, point 7.3)

At 24 hours, systemic absorption was 21.5%, 21.5% and 8.4% for the LD, MD and HD formulates respectively. Skin penetration increased with time and skin residues declined over time. The % penetrated across all doses was higher for rat than human skin

Acceptable exposure scenarios (including method of calculation)

Operator

Workers

Bystanders

It was impossible to obtain an exposition < AOEL

(0.0006mg/kg/day)

Chapter 4: Residues

Metaolism in plants (Annex IIA, point 6.1 and 6.7; Annex IIIA, point 8.1 and 8.6)

Plants group covered

Rotation crops

Plant residue definition for monitoring

Plant residue definition for risk assessment

Conversion factor (monitoring to risk assessment)

| Fruits (pome fruit; tomato and cucumber);                              |
|------------------------------------------------------------------------|
| No data available                                                      |
| Endosulfan ( $\alpha$ + $\beta$ ) and endosulfan sulfate (provisional) |
| Endosulfan ( $\alpha$ + $\beta$ ) and endosulfan sulfate (provisional) |
|                                                                        |

Endosulfan

Aditional information should be given on the nature of metabolites found in cucumber. Additional experiments on metabolism in plants are required for oil seeds and root & tuber vegetables.

Metabolism in livestock (Annex IIA, point 6.2 and 6.7; Annex IIIA, point 8.1 and 8.6)

Animals covered

Animal residue definition for monitoring

Animal residue definition for risk assessment

Conversion factor (monitoring to risk assessment) Metabolism in rat and ruminant similar (yes/no)

Fat soluble residue: (yes/no)

| Lactating sheep, goats and cows                                        |
|------------------------------------------------------------------------|
| Endosulfan ( $\alpha$ + $\beta$ ) and endosulfan sulfate (provisional) |
| Endosulfan ( $\alpha$ + $\beta$ ) and endosulfan sulfate (provisional) |
|                                                                        |
|                                                                        |
| Yes                                                                    |

Residues in succeeding crops (Annex IIA, point 6.6; Annex IIIA, point 8.5)

The stepwise approach developed by the German BBA was followed for the theoretical estimate of the residues in rotational crops. The uptake factor found for spinach (soil/plant: 2.75/1) make advisable to perform field testing. for selected leafy vegetables in different types of soil.

Stability of residues (Annex IIA, point 6 introduction; Annex IIIA, point 8 introduction)

No data available. Data requirement

Residues from livestock feeding studies (Annex IIA, point 6.4; Annex IIIA, point 8.3)

| Intakes by livestock $\ge 0.1$ mg/kg diet/day: | Ruminant: Poultry: |        | Pig:   |  |
|------------------------------------------------|--------------------|--------|--------|--|
|                                                | yes/no             | Yes/no | Yes/no |  |
| Muscle                                         | Data requirement   |        |        |  |
| Liver                                          | Data requirement   |        |        |  |
| Kidney                                         | Data requirement   |        |        |  |
| Fat                                            | Data requirement   |        |        |  |
| Milk                                           | Data requirement   |        |        |  |
| Eggs                                           | Data requirement   |        |        |  |

129

The available information is clearly insufficient. The worst case diet should be constructed to calculate the 1x dose. Feeding trials should comprise a control group, a group treated with the excess doses (3-5 x dose and 10x dose), according to the Guideline 7031/VI/95 rev. 4.

#### Summary of critical residues data (Annex IIA, point 6.3; Annex IIIA, point 8.2)

| Сгор                | Northern or   | Trials results revelant to the critical GAP <sup>(a)</sup> | Recommendation/comments                                      | MRL     | STMR <sup>(b)</sup> |
|---------------------|---------------|------------------------------------------------------------|--------------------------------------------------------------|---------|---------------------|
|                     | Mediterranean |                                                            |                                                              |         |                     |
|                     | Region        |                                                            |                                                              |         |                     |
| Citrus              | S             |                                                            | Data available are not in accordance to the GAPs. Additional |         |                     |
|                     |               |                                                            | trials required                                              |         |                     |
| Hazelnuts           | S             |                                                            | Additional trials required                                   |         |                     |
| Pome fruit          | S             | 3x0.03, 1x0.04, 1x0.05, 1x0.06, 1x0.07,                    |                                                              | 0.5     | 0.13                |
|                     |               | 4x0.08, 1x0.10, 1x0.11, 1x0.14, 2x0.21,                    |                                                              |         |                     |
|                     |               | 1x0.23, 1x0.26, 1x0.27, 1x0.46                             |                                                              |         |                     |
| Stone fuits         | N             | 0.07, 0.09, 0.13, 0.15, 0.19, 0.32, 0.40, 0.49,            | Registered use in S Europe. Residue trials performed only in | 1.0     | 0.26                |
| (peaches)           |               | 0.53                                                       | N Europe. Additional trials required                         |         |                     |
| Grapes              | S             | 3x0.15                                                     | Insufficient residue trials. Additional trials required      | 0.2 (d) | 0.15 (d)            |
| Fruiting vegetables | S(F)          | 4x0.03, 3x0.04, 2x0.06, 3x0.07, 2x0.08, 0.10,              | Data for field trials                                        | 0.5     | 0.08                |
| (tomatoes-          |               | 0.12, 2x0.20                                               |                                                              |         |                     |
| Solanacea)          |               |                                                            |                                                              |         |                     |
|                     | S(G)          | 0.06, 0.08, 0.10, 0.11, 0.12, 0.20, 0.21, 0.27,            | Data for greehouse trials. Use not recommended               | (c)     | (c)                 |
|                     |               | 0.29, 0.37, 0.60, 0.72, 1.10, 1.25, 1.78, 1.80             |                                                              |         |                     |
| Cucurbits (inedible | S             | 6x0.15, 0.19                                               |                                                              | 0.5     | 0.16                |
| peel)               |               |                                                            |                                                              |         |                     |

<sup>&</sup>lt;sup>(a)</sup> Numbers of trial in which particular residue levels were reported *e.g.*  $3 \times < 0.01$ ,  $1 \times 0.01$ ,  $6 \times 0.02$ ,  $1 \times 0.04$ ,  $1 \times 0.08$ ,  $2 \times 0.1$ ,  $2 \times 0.15$ ,  $1 \times 0.17$ 

<sup>(</sup>b) Supervised Trials Median Residue *i.e.* the median residue level estimated on the basis of supervised trials relating to the critical

<sup>(</sup>c) It is recommended the application of endosulfan under green house conditions

<sup>(</sup>d) Provisional MRL calculated based on an insufficient number of residue trials

| Сгор      | Northern or   | Trials results revelant to the critical GAP <sup>(a)</sup> | Recommendation/comments                                       | MRL      | STMR <sup>(b)</sup> |
|-----------|---------------|------------------------------------------------------------|---------------------------------------------------------------|----------|---------------------|
|           | Mediterranean |                                                            |                                                               |          |                     |
|           | Region        |                                                            |                                                               |          |                     |
| Cotton    | S             |                                                            | Data available are not in accordance to the GAPS. Additional  | -        | -                   |
|           |               |                                                            | trials required                                               |          |                     |
| Potatoes  | S             | 9x0.01, 4x0.015                                            |                                                               | 0.05     | 0.01                |
| Soybean   | Imported crop | 0.05, 0.06, 0.08, 2x0.10, 2x0.20, 0.21, 0.25,              |                                                               | 1.0      | 0.25                |
|           |               | 2x0.30, 0.40, 0.42, 0.45, 0.60                             |                                                               |          |                     |
| Tea       | Imported crop | 1.1-5.0, 16.2-24.1                                         | Insufficient and inconsistent data. Aditional trials required | -        | -                   |
| Coffee    | Imported crop | 4x0.028                                                    | Additional trials required                                    | 0.05 (d) | 0.03 (d)            |
| Cacao     | Imported crop | 5x0.015                                                    | Additional trials required                                    | 0.05 (d) | 0.02 (d)            |
| Pineapple | Imported crop |                                                            | Additional trials required                                    | -        | -                   |

<sup>(a)</sup> Numbers of trial in which particular residue levels were reported *e.g.*  $3 \times < 0.01$ ,  $1 \times 0.01$ ,  $6 \times 0.02$ ,  $1 \times 0.04$ ,  $1 \times 0.08$ ,  $2 \times 0.1$ ,  $2 \times 0.15$ ,  $1 \times 0.17$ 

(b) Supervised Trials Median Residue *i.e.* the median residue level estimated on the basis of supervised trials relating to the critical

(c) It is recommended the application of endosulfan under green house conditions

(d) Provisional MRL calculated based on an insufficient number of residue trials

Consumer risk assessment (Annex IIA, point 6.9; Annex IIIA, point 8.8)

| ADI                          | 0.006 mg/kg bw/day  |
|------------------------------|---------------------|
| TMDI (% ADI)                 | 75.5% (provisional) |
| IEDI (European Diet) (% ADI) |                     |
| Factors included in IEDI     |                     |
| ARfD                         |                     |
| Acute exposure (% ArfD)      |                     |

The TMDI should be recalculated taking into account the new MRL that have to be proposed by the applicant.

Processing factors (Annex IIA, point 6.5; Annex IIIA, point 8.4)

| Crop/proccessed crop            | Number of studies | Transfer factor | % Transference |
|---------------------------------|-------------------|-----------------|----------------|
| Soybean/steaming                | 1                 | 0.25-0.5        | 25-50          |
| Soybean/crude oil               | 1                 | 1.2-4.3         | 120-430        |
| Soybean/refined oil             | 1                 | about 0.01      | about 1        |
| Soybean/cooking of soybean meal | 1                 | 0.3-0.5         | 30-50          |
| Soybean/bread                   | 1                 | <0.1            | <10            |
| Apple/Juice,mash                | 2                 | 0.05-0.3        | 5-30           |
| Apple/pomace                    | 1                 | 1.4-1.6         | 140-160        |
| Plums/puree                     | 1                 | 0.3-0.8         | 28-80          |
| Tomato/cooked fruit             | 2                 | About 1         | 100            |
| Tomato/pomace (wet and dry)     | 2                 | 10-20           | 1000-2000      |
| Tomato/puree, juice             | 2                 | 0.16-0.43       | 16-43          |
| Grape/must                      | 2                 | 0.06-0.07       | 6-7            |
| Grape/wine                      | 2                 | <0.38           | <38            |
| Tea/infusion                    | 1                 | <0.1            | <10            |

Additional experiments required for oranges (pomace, essential oils and marmelade)

#### Proposed MRLs (Annex IIA, point 6.7; Annex IIIA, point 8.6)

| Crop/Commodity            | Proposed MRL |
|---------------------------|--------------|
| Citrus                    | (a)          |
| Tree nuts                 | (a)          |
| Pome fruits               | 0.5          |
| Stone fruits              | 1.0 (b)      |
| Grapes                    | 0.2 (c)      |
| Tomatoes (field)          | 0.5          |
| Cucurbits (inedible peel) | 0.5          |

| Crop/Commodity          | Proposed MRL |  |
|-------------------------|--------------|--|
| Cotton                  | (a)          |  |
| Potatoes                | 0.05         |  |
| Sugarbeet               | (a)          |  |
| Import tolerance limits |              |  |
| Soybean                 | 1.0          |  |
| Tea                     | (a)          |  |
| Coffee                  | 0.05 (c)     |  |
| Cacao                   | 0.05 (c)     |  |
| Pinapple                | (a)          |  |
|                         |              |  |

(a) Insufficient data to set MRL(b) Provisional MRL based on residue trials performed in N Europe

(c) Provisional MRL based on an insufficient number of residue trials.

#### <u>Chapter 5:</u> Fate and Behaviour in the Environmental

#### Route of degradation (aerobic) in soil (Annex IIA, point 7.1.1.1)

| Mineralization after 100 days                                             | < 5 % It was not correctly measured in any study.                                 |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Non-extractable residues after 100 days                                   | < 20%                                                                             |
| Relevant metabolites – name and/or code, % of applied (range and maximum) | Endosulfan sulphate (34.3-77% at 365 days)<br>The degradation in soil is required |

#### Route of degradation in soil – Supplemental studies (Annex IIA, point 7.1.1.1.2)

| Anaerobic | degradation |
|-----------|-------------|
|-----------|-------------|

Slower and with no significant differences between the isomers than during the aerobic degradation. Endosulfan sulfate was the main degradation product (15-33 % Applied radioactivity at 53 days) DT<sub>50</sub> > 200 days

Soil photolysis

Rate of degradation in soil (Annex IIA, point 7.1.1.2; Annex IIIA, point 9.1.1)

#### A correct determination of the kinetics of the parent compound and the metabolites are required.

| Method of calculation                                                         | First order kinetics                                                                                                                                                                  |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Laboratory studies (range or median, with n value, with r <sup>2</sup> value) | Sandy loam $DT_{50 \ lab}$ endosulfan ( $\alpha$ + $\beta$ ): (20°C aerobic): 98<br>$DT_{90 \ lab}$ endosulfan ( $\alpha$ + $\beta$ ): (20°C aerobic): 326<br>$r^2$ : 0.77; n:12      |
|                                                                               | Loamy sand $DT_{50 \ lab}$ endosulfan ( $\alpha$ + $\beta$ ): (20°C aerobic): 128<br>$DT_{90 \ lab}$ endosulfan ( $\alpha$ + $\beta$ ): (20°C aerobic): 426<br>$r^2$ : 0.90; n:13     |
|                                                                               | Silt loam $DT_{50 \ lab}$ endosulfan ( $\alpha$ + $\beta$ ): (20°C aerobic): 90<br>$DT_{90 \ lab}$ endosulfan ( $\alpha$ + $\beta$ ): (20°C aerobic): 299<br>$r^2$ : 0.90; n:13       |
|                                                                               | Sandy loam $DT_{50 \ lab}$ endosulfan ( $\alpha$ + $\beta$ ): (20°C aerobic): 92<br>$DT_{90 \ lab}$ endosulfan ( $\alpha$ + $\beta$ ): (20°C aerobic): 305<br>$r^2$ : 0.71; n:8       |
|                                                                               | Sandy loam $DT_{50 \ lab}$ endosulfan ( $\alpha$ + $\beta$ ): (20°C aerobic): 80<br>$DT_{90 \ lab}$ endosulfan ( $\alpha$ + $\beta$ ): (20°C aerobic):265<br>$r^2$ : 0.84; n:11       |
|                                                                               | Silty loam $DT_{50 \ lab}$ endosulfan ( $\alpha$ + $\beta$ ): (20°C aerobic): 25.6<br>DT <sub>90 lab</sub> endosulfan ( $\alpha$ + $\beta$ ): (20°C aerobic): 85<br>$r^2$ : 0.96; n:8 |
|                                                                               | Loamy sand $DT_{50 \ lab}$ endosulfan ( $\alpha$ + $\beta$ ): (20°C aerobic): 37.5<br>$DT_{90 \ lab}$ endosulfan ( $\alpha$ + $\beta$ ): (20°C aerobic): 124.7<br>$r^2$ : 0.57; n:8   |
|                                                                               | DT <sub>50 lab</sub> endosulfan ( $\alpha$ + $\beta$ ): (28°C aerobic): 37<br>DT <sub>90 lab</sub> endosulfan ( $\alpha$ + $\beta$ ): (28°C aerobic):194<br>r <sup>2</sup> :0.99; n:4 |
|                                                                               | Degradation in the saturated zone: No data                                                                                                                                            |
| Field studies (state location, range or median with n value)                  | Germany (silty loam) $DT_{50f}(\alpha+\beta)$ : 91.6 days; $DT_{90f}(\alpha+\beta)$ :<br>304.2 days (First order kinetics) $r^2=0.90$ ; $n=10$ ; 29%<br>Endosulfan sulphate 151 DAT   |

Endosulfan Decer

135

|                                             | Germany (sandy silty) $DT_{50f}$ ( $\alpha$ + $\beta$ ): 35.9 days; $DT_{90f}$   |
|---------------------------------------------|----------------------------------------------------------------------------------|
|                                             | $(\alpha+\beta)$ : 395.9 days (Root First order kinetics) $r^2 = 0.64$ ;         |
|                                             | n=8; 17% Endosulfan sulphate 447 DAT                                             |
|                                             | Germany (loamy sandy) $DT_{50f}$ ( $\alpha$ + $\beta$ ): 38.5 days; $DT_{90f}$   |
|                                             | $(\alpha+\beta)$ :424.6 (Root First order kinetics); r2= 0.94; n=10;             |
|                                             | 50% Endosulfan sulphate 28 DAT                                                   |
|                                             | Germany (Sandy loam) DT <sub>50f</sub> (α+β): 16.5 days; DT <sub>90f</sub>       |
|                                             | $(\alpha+\beta)$ :181.8 (Root First order kinetics); r2= 0.76; n=10;             |
|                                             | 67% Endosulfan sulphate 336 DAT                                                  |
|                                             | Georgia (Sandy loam) $DT_{50f}$ ( $\alpha$ + $\beta$ ): 75.86 days; $DT_{90f}$   |
|                                             | $(\alpha+\beta)$ :252 days (First order kinetics); r <sup>2</sup> =0.88; n=18    |
|                                             | Georgia (Sandy loam) $DT_{50f}$ ( $\alpha$ + $\beta$ ): 89.6 days; $DT_{90f}$    |
|                                             | $(\alpha+\beta)$ :297.7 days (First order kinetics); r <sup>2</sup> =0.86; n=18  |
|                                             | California (Clay loam) $DT_{50f}$ ( $\alpha$ + $\beta$ ): 92.9 days; $DT_{90f}$  |
|                                             | $(\alpha+\beta)$ : 308.8 days (First order kinetics); r <sup>2</sup> =0.89; n=13 |
|                                             | California (Clay loam) $DT_{50f}$ ( $\alpha$ + $\beta$ ): 89.5 days; $DT_{90f}$  |
|                                             | $(\alpha+\beta)$ : 297.5 days (First order kinetics); r <sup>2</sup> =0.82; n=13 |
|                                             | DT <sub>50f</sub> of endosulfan sulphate: not determined in any                  |
|                                             | study (Data requirement)                                                         |
| Soil accumulation and plateau concentration | Residues of endosulfan are not expected, residues of                             |
|                                             | endosulfan sulphate could be expected almost 7-9 months                          |
|                                             | after last application. (0.4 mg/kg)                                              |
|                                             | Plateur 20, 50% of the initial concentration                                     |
| l                                           |                                                                                  |

Soil adsorption/desorption (Annex IIA, point 7.1.2)

|                                                              | ,<br>,                                               |
|--------------------------------------------------------------|------------------------------------------------------|
| $K_{f} / K_{oc}$                                             | α Endosulfan: 7969-21347; OM= 1.06-4.53%; pH=5.4-5.9 |
|                                                              | β Endosulfan: 8612-13906; OM= 1.06-4.53%; pH=5.4-5.9 |
| K <sub>d</sub>                                               | α Endosulfan: 81-1022; OM= 1.06-4.53%; pH=5.4-5.9    |
|                                                              | β Endosulfan: 89-473; OM= 1.06-4.53%; pH=5.4-5.9     |
| PH dependence (yes / no) ( <u>if yes type of</u> dependence) | No data available                                    |

Mobility in soil (Annex IIA, point 7.1.3, Annex IIIA, point 9.1.2)

| Column leaching                  | No data                                                       |
|----------------------------------|---------------------------------------------------------------|
| Aged residues leaching           | <0.2% of the applied radioactivity were found in the leachate |
| Lysimeter/field leaching studies | No data                                                       |
### PEC (soil) (Annex IIIA, point 9.1.3)

Tomatoes

Potatoes

Stone fruits

Cucurbits

Sugar beet

Hazel nuts

| Method of calculation              |                   | <ul> <li>50% of crop interception. Top 5 cm soil column.</li> <li>Bulk density 1.5 g/cm<sup>3</sup>. DT<sub>50</sub>= 93 days for α+β</li> <li>Endosulfan.</li> <li>Endosulfan sulphate: 60% of the applied concentration (Initial PEC) multiplied by 0.9624. PEC of endosulfan sulphate required.</li> </ul> |                   |  |
|------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|
| Application rate                   |                   |                                                                                                                                                                                                                                                                                                               |                   |  |
| Crops                              | Maximum Single    | Number of                                                                                                                                                                                                                                                                                                     | Spraying interval |  |
|                                    | Treatment Rate kg | Applications                                                                                                                                                                                                                                                                                                  |                   |  |
|                                    | a.s./ha           |                                                                                                                                                                                                                                                                                                               |                   |  |
| Citrus, pome fruit and wine grapes | 1.05              | 2                                                                                                                                                                                                                                                                                                             | 14                |  |
| Cotton                             | 0.84              | 3                                                                                                                                                                                                                                                                                                             | 14                |  |

7

14

14

7

14

14

2

2

3

3

2

2

0.53

0.53

0.8

0.53

0.5

0.8

### Calculation of PIEC values for endosulfan

| Crops               | Maximum Single Treatment | Number of    | Spraying | PIEC mg      | PIEC mg       |
|---------------------|--------------------------|--------------|----------|--------------|---------------|
|                     | Rate kg a.s./ha          | Applications | interval | sa/kg single | sa/kg several |
|                     |                          |              |          | application  | applications  |
| Citrus , pome fruit | 1.05                     | 2            | 14       | 0.70         | 1.33          |
| and wine grapes     |                          |              |          |              |               |
| Cotton              | 0.84                     | 3            | 14       | 0.56         | 1.52          |
| Tomatoes            | 0.53                     | 2            | 7        | 0.35         | 0.69          |
| Potatoes            | 0.53                     | 2            | 14       | 0.35         | 0.67          |
| Stone fruits        | 0.8                      | 3            | 14       | 0.53         | 1.44          |
| Cucurbits           | 0.53                     | 3            | 7        | 0.35         | 1.00          |
| Sugar beet          | 0.5                      | 2            | 14       | 0.33         | 0.63          |
| Hazel nuts          | 0.8                      | 2            | 14       | 0.53         | 1.01          |

### Estimated PEC and TWA PEC after last application in citrus fruit

| PEC<br>time after last<br>application | Single<br>application | Single<br>application    | Multiple<br>application | Multiple<br>application  |
|---------------------------------------|-----------------------|--------------------------|-------------------------|--------------------------|
|                                       | Actual                | Time weighted<br>average | Actual                  | Time weighted<br>average |
| Initial                               |                       |                          | 1.33                    | 1.33                     |
| Short term 24h                        |                       |                          | 1.32                    | 1.32                     |
| 2d                                    |                       |                          | 1.31                    | 1.32                     |
| 4d                                    |                       |                          | 1.29                    | 1.31                     |
| Long term 7h                          |                       |                          | 1.26                    | 1.29                     |
| 28d                                   |                       |                          | 1.08                    | 1.20                     |
| 42d                                   |                       |                          | 0.97                    | 1.14                     |
| 156d                                  |                       |                          | 0.41                    | 0.78                     |

### Estimated PEC and TWA PEC after last application in cotton

| PEC<br>time after last<br>application | Single<br>application | Single<br>application | Multiple<br>application | Multiple<br>application |
|---------------------------------------|-----------------------|-----------------------|-------------------------|-------------------------|
|                                       | Actual                | Time weighted         | Actual                  | Time weighted           |
| Initial                               |                       | average               | 1.52                    | 1.52                    |
| Short term 24h                        |                       |                       | 1.51                    | 1.51                    |
| 2d                                    |                       |                       | 1.49                    | 1.50                    |
| 4d                                    |                       |                       | 1.45                    | 1.49                    |
| Long term 7h                          |                       |                       | 1.44                    | 1.48                    |
| 28d                                   |                       |                       | 1.23                    | 1.37                    |
| 42d                                   |                       |                       | 1.11                    | 1.30                    |
| 156d                                  |                       |                       | 0.48                    | 0.90                    |

### Estimated PEC and TWA PEC after last application in cucurbit

| PEC<br>time after last<br>application | Single<br>application | Single<br>application    | Multiple<br>application | Multiple<br>application  |
|---------------------------------------|-----------------------|--------------------------|-------------------------|--------------------------|
|                                       | Actual                | Time weighted<br>average | Actual                  | Time weighted<br>average |
| Initial                               |                       |                          | 1.0                     | 1.0                      |
| Short term 24h                        |                       |                          | 0.99                    | 1.0                      |
| 2d                                    |                       |                          | 0.99                    | 0.99                     |
| 4d                                    |                       |                          | 0.97                    | 0.99                     |
| Long term 7h                          |                       |                          | 0.95                    | 0.98                     |
| 28d                                   |                       |                          | 0.81                    | 0.90                     |
| 42d                                   |                       |                          | 0.73                    | 0.86                     |
| 136d                                  |                       |                          | 0.36                    | 0.63                     |

| Hydrolysis of active substance and relevant                                   | pH 5: >200 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| metabolites $(DT_{50})$ (state pH and temperature)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                               | pH 7: $\alpha$ Endosulfan 19 days; $\beta$ Endosulfan 10.7 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                               | pH 9: $\alpha$ Endosulfan 6.2 hours; $\beta$ Endosulfan 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                               | hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Photolytic degradation of <u>active substance and</u><br>relevant metabolites | Stable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Readily biodegradable (yes/no)                                                | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Degradation in Water/sediment                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -DT <sub>50</sub> water                                                       | 15 days ; $R^2=0.86$ ; $n=8$ (River main) (Total endosulfan)<br>12 days ; $R^2=0.85$ ; $n=8$ (Gravel pit) (Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                               | endosulfan)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $-DT_{90}$ water                                                              | $\mathbf{D}^2 = \mathbf{D}^2 = \mathbf$ |
| - $D1_{50}$ whole system                                                      | 21 days ; $R^2=0.82$ ; $n=8$ (River main) 1 otal<br>endosulfan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                               | 18 days; R <sup>2</sup> =0.83; n=8 (Gravel pit) Total endosulfan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| - DT <sub>90</sub> whole system                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mineralization                                                                | < 0.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Bound residue                                                                 | 20-23 % at the end of the study.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Distribution in water / sediment systems (active substance)                   | 10.8%/37.7% at 4 DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Distribution in water / sediment systems<br>(metabolites)                     | 0.8%/10.6% at 51 DAT of endosulfan sulfate<br>29.6%/43.1% at 4 DAT of total endosulfan<br>Water sediment study required, no information of<br>metabolites in sediment are available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

### PEC (surface water) (Annex IIIA, point 9.2.3)

Method of calculation

Application rate

Main routes of entry

| Drift . 10-50 m buffer zone. $DT_{50}=15$ days |
|------------------------------------------------|
| See table                                      |
| Drift, runoff.                                 |

 $\ensuremath{\text{PIEC}_{sw}}$  values for the selected crops after the last application

| Сгор         | Application<br>rate | Nº | SI   | Distance | Drift | Initial I   | PECsw (µg as/L) |    |     |      |      |     |      |      |
|--------------|---------------------|----|------|----------|-------|-------------|-----------------|----|-----|------|------|-----|------|------|
|              |                     |    | days | m        | %     | 0.3 m depth | 1 m depth       |    |     |      |      |     |      |      |
| Citrus       | 1.05                | 2  | 14   | 0        | 100.0 | 350.00      | 105             |    |     |      |      |     |      |      |
|              |                     |    |      | 3        | 15.5  | 54.25       | 16.275          |    |     |      |      |     |      |      |
|              |                     |    |      | 5        | 10.0  | 35.00       | 10.5            |    |     |      |      |     |      |      |
|              |                     |    |      | 10       | 4.5   | 15.75       | 4.725           |    |     |      |      |     |      |      |
|              |                     |    |      | 15       | 2.5   | 8.75        | 2.625           |    |     |      |      |     |      |      |
|              |                     |    |      | 20       | 1.5   | 5.25        | 1.575           |    |     |      |      |     |      |      |
|              |                     |    |      | 30       | 0.6   | 2.10        | 0.63            |    |     |      |      |     |      |      |
|              |                     |    |      | 40       | 0.4   | 1.40        | 0.42            |    |     |      |      |     |      |      |
|              |                     |    |      | 50       | 0.2   | 0.70        | 0.21            |    |     |      |      |     |      |      |
| Vineyards    | 1.05                | 2  | 14   | 0        | 100.0 | 350.00      | 105             |    |     |      |      |     |      |      |
|              |                     |    |      | 3        | 7.5   | 26.25       | 7.875           |    |     |      |      |     |      |      |
|              |                     |    |      | 5        | 5.0   | 17.50       | 5.25            |    |     |      |      |     |      |      |
|              |                     |    |      | 10       | 1.5   | 5.25        | 1.575           |    |     |      |      |     |      |      |
|              |                     |    |      | 15       | 0.8   | 2.80        | 0.84            |    |     |      |      |     |      |      |
|              |                     |    |      | 20       | 0.4   | 1.40        | 0.42            |    |     |      |      |     |      |      |
|              |                     |    |      | 30       | 0.2   | 0.70        | 0.21            |    |     |      |      |     |      |      |
|              |                     |    |      | 40       | 0.2   | 0.70        | 0.21            |    |     |      |      |     |      |      |
|              |                     |    |      | 50       | 0.2   | 0.70        | 0.21            |    |     |      |      |     |      |      |
| Arable crops | 0.84                | 3  | 14   | 0        | 100.0 | 280.00      | 84.00           |    |     |      |      |     |      |      |
| (cotton)     |                     |    |      | 1        | 4.0   | 11.20       | 3.36            |    |     |      |      |     |      |      |
|              |                     |    |      | 3        | 1.0   | 2.80        | 0.84            |    |     |      |      |     |      |      |
|              |                     |    |      |          |       |             |                 |    |     |      | 5    | 0.6 | 1.68 | 0.50 |
|              |                     |    |      |          |       |             |                 | 10 | 0.4 | 1.12 | 0.34 |     |      |      |
|              |                     |    |      | 15       | 0.2   | 0.56        | 0.17            |    |     |      |      |     |      |      |
|              |                     |    |      | 20       | 0.1   | 0.28        | 0.08            |    |     |      |      |     |      |      |
|              |                     |    |      | 30       | 0.1   | 0.28        | 0.08            |    |     |      |      |     |      |      |
| Arable crops | 0.53                | 3  | 7    | 0        | 100.0 | 176.67      | 53              |    |     |      |      |     |      |      |
| (Cucumber)   |                     |    |      | 1        | 4.0   | 7.07        | 2.12            |    |     |      |      |     |      |      |
|              |                     |    |      | 3        | 1.0   | 1.77        | 0.53            |    |     |      |      |     |      |      |
|              |                     |    |      | 5        | 0.6   | 1.06        | 0.318           |    |     |      |      |     |      |      |
|              |                     |    |      | 10       | 0.4   | 0.71        | 0.212           |    |     |      |      |     |      |      |
|              |                     |    |      | 15       | 0.2   | 0.35        | 0.106           |    |     |      |      |     |      |      |
|              |                     |    |      | 20       | 0.1   | 0.18        | 0.053           |    |     |      |      |     |      |      |
|              |                     |    |      | 30       | 0.1   | 0.18        | 0.053           |    |     |      |      |     |      |      |

Endosulfan

|              |                |        |        |        | TWA-     | PEC <sub>sw</sub> (µ | g as/L) |        |        |        |
|--------------|----------------|--------|--------|--------|----------|----------------------|---------|--------|--------|--------|
| Crop         | Water distance |        |        |        | Days aft | er last tr           | eatment |        |        |        |
|              | (m)            | 0      | 1      | 2      | 4        | 7                    | 14      | 21     | 28     | 42     |
| Citrus fruit | 0              | 533.28 | 521.14 | 509.38 | 486.89   | 455.62               | 392.66  | 341.30 | 299.14 | 235.32 |
|              | 3              | 82.66  | 80.78  | 78.95  | 75.47    | 70.62                | 60.86   | 52.90  | 46.37  | 36.47  |
|              | 5              | 53.33  | 52.11  | 50.94  | 48.69    | 45.56                | 39.27   | 34.13  | 29.91  | 23.53  |
|              | 10             | 24.00  | 23.45  | 22.92  | 21.91    | 20.50                | 17.67   | 15.36  | 13.46  | 10.59  |
|              | 15             | 13.33  | 13.03  | 12.73  | 12.17    | 11.39                | 9.82    | 8.53   | 7.48   | 5.88   |
|              | 20             | 8.00   | 7.82   | 7.64   | 7.30     | 6.83                 | 5.89    | 5.12   | 4.49   | 3.53   |
|              | 30             | 3.20   | 3.13   | 3.06   | 2.92     | 2.73                 | 2.36    | 2.05   | 1.79   | 1.41   |
|              | 40             | 2.13   | 2.08   | 2.04   | 1.95     | 1.82                 | 1.57    | 1.37   | 1.20   | 0.94   |
|              | 50             | 1.07   | 1.04   | 1.02   | 0.97     | 0.91                 | 0.79    | 0.68   | 0.60   | 0.47   |
| Vineyards    | 0              | 533.28 | 521.14 | 509.38 | 486.89   | 455.62               | 392.66  | 341.30 | 299.14 | 235.32 |
|              | 3              | 40.00  | 39.09  | 38.20  | 36.52    | 34.17                | 29.45   | 25.60  | 22.44  | 17.65  |
|              | 5              | 26.66  | 26.06  | 25.47  | 24.34    | 22.78                | 19.63   | 17.07  | 14.96  | 11.77  |
|              | 10             | 8.00   | 7.82   | 7.64   | 7.30     | 6.83                 | 5.89    | 5.12   | 4.49   | 3.53   |
|              | 15             | 4.27   | 4.17   | 4.08   | 3.90     | 3.64                 | 3.14    | 2.73   | 2.39   | 1.88   |
|              | 20             | 2.13   | 2.08   | 2.04   | 1.95     | 1.82                 | 1.57    | 1.37   | 1.20   | 0.94   |
|              | 30             | 1.07   | 1.04   | 1.02   | 0.97     | 0.91                 | 0.79    | 0.68   | 0.60   | 0.47   |
|              | 40             | 1.07   | 1.04   | 1.02   | 0.97     | 0.91                 | 0.79    | 0.68   | 0.60   | 0.47   |
|              | 50             | 1.07   | 1.04   | 1.02   | 0.97     | 0.91                 | 0.79    | 0.68   | 0.60   | 0.47   |
| Cotton       | 0              | 503.4  | 491.9  | 480.8  | 459.6    | 430.1                | 370.7   | 322.2  | 282.4  | 222.1  |
|              | 1              | 20.14  | 19.68  | 19.23  | 18.38    | 17.2                 | 14.83   | 12.89  | 11.3   | 8.885  |
|              | 3              | 5.034  | 4.919  | 4.808  | 4.596    | 4.301                | 3.707   | 3.222  | 2.824  | 2.221  |
|              | 5              | 3.02   | 2.952  | 2.885  | 2.758    | 2.581                | 2.224   | 1.933  | 1.694  | 1.333  |
|              | 10             | 2.014  | 1.968  | 1.923  | 1.838    | 1.72                 | 1.483   | 1.289  | 1.13   | 0.889  |
|              | 15             | 1.007  | 0.984  | 0.962  | 0.919    | 0.86                 | 0.741   | 0.644  | 0.565  | 0.444  |
|              | 20             | 0.503  | 0.492  | 0.481  | 0.46     | 0.43                 | 0.371   | 0.322  | 0.282  | 0.222  |
|              | 30             | 0.503  | 0.492  | 0.481  | 0.46     | 0.43                 | 0.371   | 0.322  | 0.282  | 0.222  |
| Cucumber     | 0              | 397    | 388    | 379.2  | 362.5    | 339.2                | 292.3   | 254.1  | 222.7  | 175.2  |
|              | 1              | 15.88  | 15.52  | 15.17  | 14.5     | 13.57                | 11.69   | 10.16  | 8.908  | 7.008  |
|              | 3              | 3.97   | 3.88   | 3.792  | 3.625    | 3.392                | 2.923   | 2.541  | 2.227  | 1.752  |
|              | 5              | 2.382  | 2.328  | 2.275  | 2.175    | 2.035                | 1.754   | 1.525  | 1.336  | 1.051  |
|              | 10             | 1.588  | 1.552  | 1.517  | 1.45     | 1.357                | 1.169   | 1.016  | 0.891  | 0.701  |
|              | 15             | 0.794  | 0.776  | 0.758  | 0.725    | 0.678                | 0.585   | 0.508  | 0.445  | 0.35   |
|              | 20             | 0.397  | 0.388  | 0.379  | 0.362    | 0.339                | 0.292   | 0.254  | 0.223  | 0.175  |
|              | 30             | 0.397  | 0.388  | 0.379  | 0.362    | 0.339                | 0.292   | 0.254  | 0.223  | 0.175  |

### $\text{TWA-PEC}_{\text{sw}}$ values at 48h, 96 h and 21 days for the selected crops after the last application

Proper scenarios for the risk assessment of endosulfan in the crops and conditions included in the intended uses are required.

PEC (sediment)

Method of calculation

Application rate

| No data |  |  |  |
|---------|--|--|--|
|         |  |  |  |

| PEC <sub>(8)</sub> | Single<br>application | Single application    | Multiple<br>application | Multiple<br>application |
|--------------------|-----------------------|-----------------------|-------------------------|-------------------------|
|                    | Actual                | Time weighted average | Actual                  | Time weighted average   |
| Initial            |                       |                       |                         |                         |
| Short term         |                       |                       |                         |                         |
| Long term          |                       |                       |                         |                         |

### PEC (ground water) (Annex IIIA, point 9.2.1)

Method of calculation <u>and type of study (*e.g.*</u> <u>modelling, monitoring, Lysimeter)</u> Application rate Paren Endosulfan and endosulfan sulfate and endosulfan diol can be regarded as immobile.

### PEC<sub>(gw)</sub>

Maximum concentration

Average annual concentration

### Fate and behaviour in air (Annex IIA, point 7.2.2; Annex IIIA, point 9.3)

Direct photolysis in air

Photochemical oxidative degradation in air  $(DT_{50})$ Volatilization No direct photolysis

8.5 to 27 days

 $\alpha$  isomer >  $\beta$  isomet 25 to 63% (24h)

From soil:

### PEC (air)

Method of calculation

No data

### PEC<sub>(a)</sub>

Maximum concentration

No data

### **Definition of the Residue** (Annex IIA, point 7.3)

Relevant to the environmental

Both isomers of the active substance ( $\alpha$  endosulfan;  $\beta$  endosulfan) and endosulfan sulphate. However this definition must be considered incomplete. A wider investigation of the degradation routes of this compound must be done in order to establish a proper residue definition.

Soil (<u>indicate location and type of study</u>) Surface water (<u>indicate location and type of</u> study)

Ground water (indicate location and type of study)

Air (indicate location and type of study)

No data available No data available No data available No data available

### <u>Chapter 6:</u> Effects on Non-target Species

### Effects on terrestrial vertebrates (Annex IIA, point 8.1, Annex IIIA, points 10.1 and 10.3)

| Acute toxicity to mammals      | Rat LD50 10 mg/kg b.w.                        |
|--------------------------------|-----------------------------------------------|
| Long-term toxicity to mammals  | Rat, rabit, mouse chronic NOEL = 1 mg/kg b.w. |
| Acute toxicity to birds        | Mallard duck LD50 = $28 \text{ mg/kg b. w.}$  |
| Dietary toxicity to birds      | Bobwhite quail = 805 ppm                      |
| Reproductive toxicity to birds | Mallard duck NOEC = 30 ppm                    |

### Toxicity/exposure ratios for terrestrial vertebrates (Annex IIIA, points 10.1 and 10.3)

| r           |                      |                      |                | 1    | T        |
|-------------|----------------------|----------------------|----------------|------|----------|
| Application | Crop                 | Category             | Time-scale     | TER  | Annex VI |
| rate        |                      | (e.g. insectivorous  |                |      | Trigger  |
| (kg as/ha)  |                      | bird)                |                |      |          |
| 1.05        | Citrus, pome fruit,  | Small herbivorous    | Acute          | 3.7  | 10       |
|             | vineyards            | /insectivorous birds |                | 4    |          |
| 1.05        | Citrus, pome fruit,  | Small herbivorous    | Dietary short- | 25   | 10       |
|             | vineyards            | /insectivorous birds | term           | 26   |          |
| 1.05        | Citrus, pome fruit,  | Small herbivorous    | Long term      | 0.92 | 5        |
|             | vineyards            | /insectivorous birds |                | 0.98 |          |
| 0.53        | Tomatoes,            | Small herbivorous    | Acute          | 7    | 10       |
|             | potratoes, cucurbits | /insectivorous birds |                | 8    |          |
| 0.53        | Tomatoes,            | Small herbivorous    | Dietary short- | 49   | 10       |
|             | potratoes, cucurbits | /insectivorous birds | term           | 52   |          |
| 0.53        | Tomatoes,            | Small herbivorous    | Long term      | 1.8  | 5        |
|             | potratoes, cucurbits | /insectivorous birds |                | 1.9  |          |
| 1.05        | Citrus, pome fruit,  | Small herbivorous    | Acute          | 1.2  | 10       |
|             | vineyards            | /insectivorous       | Long-term      | 2.4  | 5        |
|             |                      | mammals              |                |      |          |
| 0.53        | Tomatoes,            | Small herbivorous    | Acute          | 0.12 | 10       |
|             | potratoes, cucurbits | /insectivorous       | Long-term      | 0.24 | 5        |
|             | -                    | mammals              | -              |      |          |

The risks for mammals have been calculated assuming a 25% relative feed demand

Endosulfan

| Group            | Test substance | Time-scale | Endpoint                             | Toxicity    |
|------------------|----------------|------------|--------------------------------------|-------------|
|                  |                |            |                                      | (mg/l)      |
| Laboratory tests |                |            |                                      |             |
| fish             | technical      | Acute      | 96h LC50 range                       | 0.0001-0.01 |
| fish             | technical      | Acute      | 96h LC50 95 <sup>th</sup> percentile | 0.00013     |
| invertebrates    | technical      | Acute      | LC50 most sensitive                  | 0.00004     |
|                  |                |            | invertebrate                         |             |
| invertebrates    | technical      | Acute      | 48h EC50 Daphnia                     | 0.15        |
| algae            | Technical      | Chronic    | 72 h NOEC                            | 0.56        |
|                  |                |            |                                      |             |
| fish             | technical      | Chronic    | 28 d NOEC                            | 0.00005     |
| invertebrates    | technical      | Chronic    | 21 d NOEC                            | 0.063       |
|                  |                |            |                                      |             |

### **Toxicity data for aquatic species (most sensitive species of each group)** (Annex IIA, point 8.2, Annex IIA, point 10.2)

Microcosm or mesocosm tests

A pond study is considered the essential work, fish mortalities were observed for water concentrations of 0.4 and  $1 \mu g/l$  and the percentage of species affected is in agreement with the proportion estimated by the sensitivity distribution curve. No effects on water column invertebrates were observed. No conclusions on the effects on sediment dwelling organisms can be achieved.

Endosulfan

| A           | Cara          | 0        | <b>T</b> '  | Distance | TED   | A         |
|-------------|---------------|----------|-------------|----------|-------|-----------|
| Application | Crop          | Organism | I ime-scale | Distance | TEK   | Annex VI  |
| rate        |               |          |             | (m)      |       | Ingger    |
| (kg as/ha)  |               |          |             |          | 0.000 |           |
| 1.05        | Citrus        | Fish     | acute       | 3        | 0.002 | MOS of    |
|             |               |          |             | 10       | 0.008 | 10        |
|             |               |          |             | 50       | 0.18  | suggested |
| 0.53        | Arable crops  | Fish     | acute       | 1        | 0.018 | MOS of    |
|             |               |          |             | 10       | 0.18  | 10        |
|             |               |          |             | 30       | 0.72  | suggested |
| 1.05        | Citrus        | Daphnia  | acute       | 3        | 2.7   | 100       |
|             |               |          |             | 10       | 9.5   |           |
|             |               |          |             | 50       | 214   |           |
| 0.53        | Arable crops  | Daphnia  | acute       | 1        | 21    | 100       |
|             | _             |          |             | 10       | 211   |           |
|             |               |          |             | 30       | 833   |           |
| 1.05        | Citrus        | Fish     | Chronic     | 3        | 0.001 | 10        |
|             |               |          |             | 10       | 0.003 |           |
|             |               |          |             | 50       | 0.07  |           |
| 0.53        | Arable crops  | Fish     | Chronic     | 1        | 0.007 | 10        |
|             | 1             |          |             | 10       | 0.07  |           |
|             |               |          |             | 30       | 0.28  |           |
| 1.05        | Citrus        | Daphnia  | NOEC        | 3        | 1.1   | 10        |
|             |               |          |             | 10       | 4     |           |
|             |               |          |             | 50       | 90    |           |
| 0.53        | Arable crops  | Daphnia  | NOEC        | 1        | 89    | 10        |
| 0.23        | rituble crops | Duphinu  | TOLO        | 10       | 90    | 10        |
|             |               |          |             | 30       | 350   |           |
| 1.05        | Citrus        | Δίσερ    | NOEC        | 3        | 10.3  | 10        |
| 1.05        | Ciuus         | mgau     | nole        | 5        | 10.5  | 10        |
| 0.53        | Arabla grops  | Algoo    | NOEC        | 1        | 50    | 10        |
| 0.55        | Anable crops  | Aigat    | nole        | 1        | 50    | 10        |

### Toxicity/exposure ratios for the most sensitive aquatic organisms (Annex IIIA, point 10.2)

TERs are calculated for the initial PECsw using the BBA spray drift method

### Bioconcentration

| Bioconcentration factor (BCF)                     | 5000   |
|---------------------------------------------------|--------|
| Annex VI Trigger: for the bioconcentration factor | 100    |
| Clearance time $(CT_{50})$                        | 2 days |
| (CT <sub>90</sub> )                               |        |

### Effects on honeybees (Annex IIA, point 8.3.1, Annex IIIA, point 10.4)

Acute oral toxicity

Acute contact toxicity

| $LD50 = 2 \mu g/bee$    |  |
|-------------------------|--|
| LD50 = $0.82 \mu g/bee$ |  |

### Hazard quotients for honey bees (Annex IIIA, point 10.4)

Field or semi-field tests The submited study cannot be validated

### Effects on other arthropod species (Annex IIA, point 8.3.2, Annex IIIA, point 10.5)

| Species        | Stage | Test      | Dose       | Endpoint | Effect | Annex VI |
|----------------|-------|-----------|------------|----------|--------|----------|
|                |       | Substance | (kg as/ha) |          |        | Trigger  |
| Laboratory tes | ts    |           |            |          |        |          |
|                |       |           |            |          |        | 30%      |
|                |       |           |            |          |        | 30%      |
|                |       |           |            |          |        | 30%      |

Field or semi-field tests

Several non standard laboratory and field data suggest a potential risk for several non-target arthropods

### Effects on earthworms (Annex IIA, point 8.4, Annex IIIA, point 10.6)

Acute toxicity

Reproductive toxicity

11 mg/kg (geometric mead validable data) No data submitted

### **Toxicity/exposure ratios for earthworms** (Annex IIIA, point 10.6)

| Application rate<br>(kg as/ha) | Crop                               | Time-scale | TER | Annex VI<br>Trigger |
|--------------------------------|------------------------------------|------------|-----|---------------------|
| 2x1.05                         | Citrus, pome fruits vine<br>grapes | acute      | 8.3 | 10                  |
| 3x0.84                         | Cotton                             | Acute      | 7.2 | 10                  |
| 2x0.53                         | Tomatoes                           | acute      | 16  | 10                  |

### Effects on soil micro-organisms (Annex IIA, point 8.5, Annex IIIA, point 10.7)

Nitrogen mineralization

Carbon mineralization

| No relevant effects for 5x the a.r.  |  |
|--------------------------------------|--|
| No relevant effects for 10x the a.r. |  |

### Classification and proposed labelling (Annex IIA, point 10)

with regard to ecotoxicological data

N R50/53

### LEVEL 3

# **ENDOSULFAN**

Proposal for the decision

### 3 Proposed decision with respect to the application for inclusion of the active substance in Annex I

#### **3.1** Background to the proposed decision

The package of analytical methods for endosulfan residues in animals, plant material, soil, water and wild life is necessary to support the Annex I inclusion.

Based on acute oral toxicity studies in rats, and in accordance with EU criteria for classification, packaging and labelling of dangerous substances, Endosulfan is classified as 'very toxic', assigned the symbol "T+" and the risk phrase 'R28 very Toxic if swallowed'. Based on the dermal LD50 value in rats, it also should be classified as "Harmful" and be associated with the risk phrase "Harmful in contact with skin". Based on results of the acute inhalation study in rat, Endosulfan should be classified as 'very toxic', assigned the symbol "T+" and the risk phrase 'R26 very Toxic by inhalation' in accord with EU Guidelines.

The short term toxicity studies submitted did not allow to establish a correct NOAEL to be used in the AOEL calculation, the dermal and inhalation short term toxicity studies were considered not acceptable.

The overall weight of evidence from the *in vitro* and *in vivo* studies, submitted by AgrEvo, Luxan (Excel) and Calliope, is that endosulfan does not induce gene mutation. Nevertheless, although it appears to be non-clastogenic, more studies are required in order to give a definitive conclusion.

Endosulfan was not carcinogenic at any dose tested on rats, mice or dogs. In addition, endosulfan was not toxic for reproduction; fetotoxicity appear at maternally toxic doses.

It is impossible to obtain solvent acute toxicity data on endosulfan-lactone, endosulfan-hydroxyether, endosulfan-ether, and endosulfan-alcohol because the submitted studies have serious deficiencies, and they have been evaluated as unacceptable. More information is required. The subchronic toxicity study on endosulfan-sulphate was considered unacceptable, since this metabolite was included in the residue definition it should be convenient to clarify its subchronic toxicity. Besides, according to the available information, one endosulfan metabolite, endosulfan-diol, is considered to be a non-genotoxic agent.

The operator exposure should be recalculated taking into account the new GAP, with the available data it is not possible to assure that the risk for operators and workers is negligible.

The residue definition in plant and animal commodities is provisional and it is subject to a confirmation of the validity of the proposed plant metabolic behaviour and the metabolism in animals, which must be carried out in additional experiments that will be required from the applicants.

Many of the residue trials carried out did not follow the GAP conditions. Consequently, only those residue data generated according to the GAPs were considered in MRLs calculation.

Based on the residue data obtained from those residue trials that were performed according to the GAPs, most of MRLs proposed by the applicant were not consistent. Consequently, most of MRLs have to be considered just as provisional until more data is made available from the additional residue trials that have been required to the applicant. The theoretical maximum daily intake (TMDI) of endosulfan residues has to be recalculated taking into account the new MRL resulting from the residue trials required in the Level 4 of this Monograph.

The environmental data provided indicated that endosulfan tends to be degraded in soil and water although pathways should be further investigated. The degradation of endosulfan in soil did not show any alteration of the hexaclor norborene bicycle and showed a very low mineralization (<5%). These two facts suggest a high persistence of a soil residue constituted by a number of chlorinated metabolites, which may not account individually for more than 10% of applied dose but that all together may represent high amount of it. Based on their chemical structure it may be expected that their physico chemical properties of these compound will be similar and generally persistent and bioaccumulable. Therefore, a wider investigation of the degradation routes of this compound must be done in order to define properly the residue in the environment. As the degradation route in soil is not well defined and complete, it may not be discarded the formation of more polar metabolites able to reach ground water, the available studies demonstrated that parent endosulfan, endosulfan sulphate and endosulfan diol are immobile in soil.

In water, available data indicated that endosulfan tend to remain in the sediment and it is a source of endosulfan residue for the aquatic system. A correct determination of  $DT_{50}$  and  $DT_{90}$  values of parent endosulfan and its metabolites in water, sediment and total system should be required, a correct degradation kinetics (route and rates) should be proposed. The field studies submitted clearly showed the importance of the run-off in the endosulfan concentrations in water, therefore proper scenarios for the risk assessment of endosulfan in the crops and conditions included in the intended uses should be required.

The available information, although extensive, does not allow to conduct a proper environmental risk assessment and therefore most risk identifications must be based on low tier assessment.

A potential acute and chronic risk for birds and mammals, particularly small insectivorous vertebrates, has been identified. In addition, potential risk for bees, other arthropods and earthworms should also be assumed.

Endosulfan is highly toxic for aquatic vertebrates and invertebrates, fish and some invertebrate groups are considered the most sensitive populations. A potential risk for fish has been identified using the generic scenario. However the rapporteur considers that these worst-case scenarios are not realistic at least for some of the intended uses. Therefore a refinement of the risk assessment using a crop specific

Endosulfan

worst-case scenarios is requested. The assessment should cover both spray drift and run-off exposure routes and also the risk for sediment dwelling organisms.

The risk for algae, aquatic plants and soil micro-organisms is very low.

Endosulfan should be considered as bioaccumulable but due to the rapid clearance no risk for biomagnification through the food chain must be expected.

Due to lack of information the risk associated to the metabolites cannot be assessed.

### 3.2 Proposed decision concerning inclusion in Annex I

The decision on the inclusion of Endosulfan in Annex I of Council Directive 91/414/ECC is postponed pending receipt and evaluation of the further information data listed in the Level 4 of this monograph.

# **3.3** Rational for the postponement of the decision to include the active substance in Annex I, or for the conditions and restrictions to be associated with a proposed inclusion in Annex I, as appropriate.

With the available information it is not possible to obtain a correct degradation route and rate of endosulfan in soil and water, a further investigation concerning the environmental fate and behaviour of endosulfan is necessary in order to perform a good risk assessment. Moreover the available information does not allow having a clear profile of the degradation route of endosulfan in soil and water. Proper scenarios based on the intended uses and on the conditions of use should be submitted to do a higher tier risk assessment.

### **LEVEL 4**

# ENDOSULFAN

**Further information** 

## 4. Further information to permit a decision to be made, or to support a review of the conditions and restrictions associated with the proposed inclusion in Annex I

### 4.1 Identity of the active substance

B.V. Luxan (Excel Industries Ltd.) should submit:

The proposed GAPs in the European Union separated in northern and southern zone, because the submitted GAPs are not clear.

**Method of manufacture (synthesis pathway)**: Not enough details has been submitted on the actual manufacture process employed by EXCEL. Details such as solvent and temperatures should have been submitted

Analytical profile of batches: Information on test material and methods should be submitted to consider these data acceptable.

**Composition of the preparation:** Emulsifier and stabiliser have not been well specified. No safety data sheet on these components have been provided. This information is required.

### 4.2 Physical and chemical properties of the active substance

The physico-chemical compatibility must be studied with the formulate Callistar.

Luxan B.V (Excel) has not provided any available documentation (Doc K) on plant protection product Endocel 35EC, this information should be required.

### 4.3 Data on application and further information

The applicant B. V. Luxan (Excel Industries Ltd.) did not submit any data concerning the packaging and compatibility with packaging materials, this data are essential to calculate the operator exposure.

Moreover the applicant had not take into account the endosulfan toxicity for aquatic organism for the procedures for cleaning application equipment proposed. No data concerning the procedures for destruction or decontamination of the plant protection product and its packaging were submitted.

### 4.4 Methods of analysis

### <u>AgrEvo</u>

For animal products only an acceptable method for liver, kidney and blood of Wistar rats has been submitted. Validation by an independent laboratory is required for this method.

For plant material many old methods, poorly validated, have been submitted. Only the analytical method for melons and vines and the method for potatoes are fully validated. For the rest of the methods no validation data are provided; these data are required to support residue trials that use those methods. Validation by an independent laboratory is also required for plant methods.

For soil method validation data and an English translation of the original report is required.

For drinking water validation data are required.

For surface water no method is provided and it is required.

For wildlife an analytical method to determine endosulfan an its metabolites in fish is required.

### **Calliope**

A method for the determination of technical active ingredient purity and a method for impurities is required for inclusion of Calliope product in Annex 1 of Directive 91/414/EEC because are necessary to establish technical specifications of Calliope product.

As Endosulfan has been classified as very toxic a method for Endosulfan residues in animal and human body fluids and tissues is required.

Methods for analysis of residue sin plants provided by Calliope are not sufficiently validated. Validation and validation by an independent laboratory is required for these methods. It is pointed out that Data Protection is required for the only two fully validated methods submitted by AgrEvo.

Validation data are required to support the method for analysis of soil submitted by Calliope.

A validated method for the determination of endosulfan and its metabolite endosulfan sulphate in surface and drinking water is required to Calliope since the method submitted is not acceptable.

A method for the determination of endosulfan in air is required since the method submitted is not acceptable and Data Protection has been claimed for the method submitted by AgrEvo. A method for the determination of endosulfan in fish tissues is required.

| Monograph Volume I Level 4 156 Endosulfan December 1 | Monograph | Volume I | Level 4 | 156 | Endosulfan | December 199 |
|------------------------------------------------------|-----------|----------|---------|-----|------------|--------------|
|------------------------------------------------------|-----------|----------|---------|-----|------------|--------------|

### 4.5 Toxicology and metabolism

### **Toxicokinetics**

The following studies were presented only as reviews.

Deema *et al* 1996, (AgrEvo: ANRA) FMC Corporation, 196 (AgrEvo: ANRA) Maier-Bode , 1996 (Excel, 5/01) Gupta and Chandra, 1975 (Excel, 5.1.2/03)

Original paper should be provided.

### Acute toxicity studies

The following studies were not provided in the original dossier, nevertheless, they were added later by AgrEvo and will be evaluated as addendum to monograph

- Skin irritation in rabbits.
- Eye irritation in rabbits
- Skin sensitisation (maximisation test).

Elsea (1957), Bracha (1977) and Dikshits (1984) studies were considered as additional information till receiving original paper

### Short-term studies

The following studies were not provided in the original dossier, nevertheless, they were added later by AgrEvo and will be evaluated as addendum to monograph

- Short term oral study in rats.
- Short term inhalation study in rats.
- Short term dermal study in rabbits.
- Information about a preliminary study mentioned in the subchronic inhalation toxicity study
- (B.5.3.3.2-1) which was used to establish a NOAEL value.
- A 90-days feeding study in dogs in required

### Genotoxicity

- *In vivo* chromosomal aberration assay in rodent bone narrow cells (chromosomal aberration assay or micronucleus test). Studies should be performed according to specific test guidelines. The highest dose tested should be a dose that produces some indication of toxicity. GLPs should be applied. Depending on the results obtained in this study, more studies could be required.

### Toxicity of metabolites

| Monograph | Volume I | Level 4 | 157 | Endosulfan | December 1999 |
|-----------|----------|---------|-----|------------|---------------|
|-----------|----------|---------|-----|------------|---------------|

The following studies are required:

- Acute toxicity of endosulfan-lactone, endosulfan-hydroxyether, endosulfan-ether, and endosulfan-alcohol.
- Short term toxicity of endosulfan-sulphate.

### 4.6 Residue data

Additional information should be provided dealing with the nature of metabolites found in cucumber, in particular about those present in the non-polar and polar fractions. Special attention should also be given to the lactone metabolite due to its high toxicity as it is shown in the toxicity studies.

Additional experiments on metabolism in plants are required for oils seeds and root and tuber vegetables.

Animal metabolism study:

The Table 4.6-1 shows the additional trials required from the applicant in order to establish the adequate MRLs for each crop:

| Crop       | Region | No. Trials | No. applications | Rate       | Rate       | PHI  |
|------------|--------|------------|------------------|------------|------------|------|
|            |        |            |                  | (kg as/hl) | (kg as/ha) | days |
| Mandarins  | S      | 4 DC, 4 AH | 2                | 0.035      | 1.05       | 21   |
| Oranges    | S      | 4 DC, 4 AH | 2                | 0.035      | 1.05       | 21   |
| Hazelnuts  | S      | 2 DC, 2 AH | 2                | 0.08       | 0.8        | 28   |
| Peaches    | S      | 4 DC, 4 AH | 3                | 0.053      | 0.8        | 21   |
| Grapes     | S      | 5 AH       | 2                | 0.105      | 1.05       | 28   |
| Cucurbits  | S      | 1 AH       | 3                | 0.053      | 0.53       | 7    |
| Tea        | W      | 3 DC, 3 AH | 3                | 0.126      | 0.44       | 7    |
| Coffee     | W      | 4 AH       | 3                | 1.05       | 1.05       | 30   |
| Cacao      | W      | 3 AH       | 3                | 0.875      | 0.35       | 28   |
| Sugar beet | S      | 8 AH       | 2                | 0.125      | 0.50       | 25   |
| Cotton     | S      | 4 AH       | 3                | 0.105      | 0.84       | 15   |
| Pineapple  | W      | 4 AH       | 2                | 0.84       | 1.68       | 60   |

**Table 4.6-1:** Residue trials required

Additional experiments in prunes and raisins would be necessary to demonstrate if a residue concentration takes place in these products. The same can be applied for essential oils in citrus.

Residue trials and processing studies in tea.

| Monograph | Volume I | Level 4 | 158 | Endosulfan | December 1999 |
|-----------|----------|---------|-----|------------|---------------|
|-----------|----------|---------|-----|------------|---------------|

Animal feeding study on rumiants and poultry considering a worst case animal diet

Field tests which provide information on the actual residue situation in rotational crops are required for selected leafy vegetables in different types of soil and climatic conditions.

### 4.7 Environmental fate and behaviour

DT values of endosulfan sulfate in soil (laboratory studies and field studies)

A wider investigation of the degradation routes in soil and water must be done.

PEC in soil for endosulfan sulfate.

A correct determination of  $DT_{50}$  and  $DT_{90}$  values of parent endosulfan and its metabolites in water, sediment and total system.

A correct degradation kinetics (route and rates) should be proposed.

The field studies submitted clearly showed the importance of the run-off in the endosulfan concentrations in water, therefore proper scenarios for the risk assessment of endosulfan in the crops and conditions included in the intended uses should be required.

### 4.8 Ecotoxicology

Information on the toxicity of all relevant metabolites for all taxonomic groups, including either specific tests or information supporting that the risk is covered by the risk of the active substance.

Semi-field studies on birds and/or relevant information to refine the acute and chronic risk for birds and mammals.

The need of a dietary short-term test on birds must be decided after the ECCO decision on the validity of the existing test.

Specific higher tier scenarios for each crop to assess the realistic risk to aquatic organisms associated to spray drift and run-off exposure of surface water.

A chronic life-cycle study on a sensitive fish species.

Risk management measures for the protection of shrimp cultures.

A chronic toxicity study on sediment dwelling micro-organisms and/or higher tier studies to address the risk for this group.

| Monograph  | Volumo I | Lovol 4 | 150 | Endoculton   | December 1000 |
|------------|----------|---------|-----|--------------|---------------|
| wionograph | volume 1 | Level 4 | 139 | Linuosuitait | December 1999 |

A field tests on bees.

Enough information to assess the risk for other non-target arthropods

A reproduction toxicity study on earthworms.

A realistic risk assessment of the risk of the active substance and its metabolites to earthworms.

### 4.9 Classification, packaging and labelling

No data required.